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This paper describes an agent-based evolution­
ary computing technique called GRAEL (Grammar 
Evolution), that is able to perform different natu­
ral language grammar optimization and induction 
tasks. Two different instantiations of the GRAEL-
environment are described in this paper: in GRAEL-
1 large annotated corpora are used to bootstrap 
grammatical structure in a society of agents, who 
engage in a series of communicative attempts, dur­
ing which they redistribute grammatical informa­
tion to reflect useful statistics for the task of pars­
ing. In GRAEL-2, agents are allowed to mutate 
grammatical information, effectively implementing 
grammar rule discovery in a practical context. A 
combination of both GRAEL-1 and GRAEL-2 can 
be shown to provide an interesting all-round opti­
mization for corpus-induced grammars. 

gins of grammar in a computational context [Batali, 2002; 
Kirby, 2001J or the co-ordinated co-evolution of grammatical 
principles [Briscoe, 1998]. Yet so far, little or no progress 
has been achieved in evaluating evolutionary computing as a 
tool for the induction or optimization of data-driven parsing 
techniques. 

The GRAEL1 environment provides a suitable framework 
for the induction and optimization of any type of grammar 
for natural language in an evolutionary setting. In this pa­
per we hope to provide an overview of GRAEL as a grammar 
optimization and induction technique. We wil l first outline 
the basic architecture of the GRAEL environment in Section 
2 on the basis of a toy example. Next, we introduce GRAEL-
1 (Section 3) as a grammar optimization technique that can 
enhance corpus-induce grammars. By adding an element of 
mutation in GRAEL-2 we implement a method to extend the 
coverage of a corpus-induced grammar. We will also describe 
a combination of both GRAEL-1 and GRAEL-2 which can be 
shown to provide an interesting all-round optimization tech­
nique for corpus-induced grammars. 

2 GRAEL - Grammar Evolution 
A typical GRAEL society contains a population of agents in 
a virtual environment. Each of these agents holds a number 
of structures that allows it to produce sentences as well as 
induce a probabilistic grammar to analyze other agents' sen­
tences. During an extended series of error-driven inter-agent 
interactions, these grammars are updated over time. While 
the evolutionary computing approach of GRAEL is able to de­
fine the quality of the grammars that are developed over time, 
the agent-based aspect of GRAEL ensures that the grammar 
optimization is grounded in the practical task of parsing it-
self. From an engineering point of view, GRAEL provides a 
general framework for grammar optimization and induction, 
but from a more theoretical point of view, GRAEL can also 
help us to understand the dynamics of grammar emergence 
and evolution over time. 

In the data-driven GRAEL experiments described in this pa­
per, the grammatical knowledge of the agents in the society 
is bootstrapped by using an annotated natural language cor­
pus [Marcus et al., 1993]. At the onset of such a data-driven 
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1 Introduction 
Evolutionary computing has seen many interesting applica­
tions on a broad range of research domains over the years. Its 
ability to overcome the problem of local maxima in finding 
a solution to a particular problem, by recombining and mu­
tating individuals in a society of possible solutions, has made 
it an attractive technique for problems involving large, com­
plicated and non-linearly divisible search spaces. The evo­
lutionary computing paradigm has however always seemed 
reluctant to deal with natural language syntax, probably be­
cause it is essentially a recursive, non-propositional system, 
dealing with complex issues such as long-distance dependen­
cies and constraints. This has made it difficult to incorporate 
it in typically propositional evolutionary systems such as ge­
netic algorithms. 

A limited amount of GA-related syntactic research has fo­
cused on linguistic data [Smith and Witten, 1996; Wyard, 
1991; Antonisse, 1991; Araujo, 2002], but none of these sys­
tems are suited to a generic (treebank) grammar optimization 
task, mainly because the grammatical formalism and evo­
lutionary processes underlying these systems are designed 
to fit a particular task, such as information retrieval [Losee, 
1995]. Other work on syntax in the evolutionary comput­
ing paradigm has either been involved in studying the ori-



GRAEL society, the syntactic structures of a treebank are ran­
domly distributed over the agents, so that each agent holds a 
number of tree-structures in memory. These structures enable 
them to generate sentences, as well as provide grammars that 
allow them to analyze other agents' sentences. 

The actual interaction between agents is implemented in 
language games: an agent (agl) presents a sentence to an­
other agent (ag2). If ag2 is able to correctly parse agl's sen­
tence, the communication is successful. If on the other hand, 
ag2 is lacking the proper grammatical information to parse 
the sentence correctly, agl shares the necessary information 
for ag2 to arrive at the proper solution. 

Figure 1 displays a toy example of such a language game. 
In this example, a "treebank" of two structures has been dis­
tributed over a society of two agents. The two agents engage 
in a language game, in which agl presents the sentence "1 
offered some bear hugs" to ag2 for parsing. At this point in 
time, ag2's grammar does not contain the proper grammatical 
information to interpret this sentence the way agl intended 
and so ag2 wil l return an incorrect parse, even though it is 
consistent with its own grammar. 

Consequently, agl wil l try and help ag2 out by reveal­
ing the minimal correct substructure of the correct parse that 
should enable ag2 to arrive at a better solution. This informa­
tion is incorporated in ag2's grammar, who wil l try to parse 
the sentence again with the updated knowledge. When ag2 
is able to provide the correct analysis (or is not able to after 
a certain number of attempts) either agl's next sentence wil l 

be parsed, or two other agents in the GRAEL society will be 
randomly selected to play a language game. 

These interactions, which introduce a concept of error-
driven knowledge sharing, extend the agents' grammars fast, 
so that the datasets can grow very large in a short period of 
time. A generation-based GRAEL society can be used to al­
low the society to purge itself of bad agents and build new 
generations of good parser agents, who contain a fortuitous 
distribution of grammatical knowledge. This involves the use 
of fitness functions that can distinguish good agents from bad 
ones. For a full overview of all the evolutionary parameters 
in the GRAEL environment, many of which have a significant 
impact on processing, we would like to refer to [Dc Pauw, 
2002]. In this paper, we wil l describe the most relevant subset 
of experiments that allows us to evaluate GRAEL as a gram­
mar induction and optimization technique. 

3 GRAEL-1: Probabilistic Grammar 
Optimization 

Historically, most syntactic parsers for natural language have 
made use of hand-written grammars, consisting of a labo­
riously crafted set of grammar rules. But in recent years, 
a lot of research efforts employ annotated corpora to au­
tomatically induce grammars [Bod, 1998; Collins, 1999; 
De Pauw, 2000]. Yet, data-analysis of the output gener­
ated by these parsers still brings to light fundamental limi­
tations to these corpus-based methods [Klein and Manning, 
2001]. Even though generally providing a much broader cov­
erage than hand-built grammars, corpus-induced grammars 
may still not hold enough grammatical information to pro­
vide parses for a large number of sentences, as some rules 
that are needed to generate the correct tree-structures are not 
induced from the original corpus (cf. Section 4). 

But even if there were such a thing as a full-coverage 
corpus-induced grammar, performance would still be limited 
by the probabilistic weights attributed to its rules. A typi­
cal data-driven parser provides a huge collection of possible 
parses for any given sentence. Fortunately, we can also in­
duce useful statistics from the annotated corpus that provides 
a way to order these parse forests to express a preference for 
a particular parse. These statistics go a long way in provid­
ing well ordered parse forests, but in many other cases, it can 
be observed that the ranking of the parse forest is sometimes 
counter-intuitive in that correct constructs are often overtaken 
by obviously erroneous, but highly frequent structures. 

This can easily be explained by the inherent nature of 
corpus-based grammars: the initial probabilistic values at­
tached to the grammar rules induced from the annotated data 
are equal to their relative frequency in the corpus. It might be 
the case however that, even though they are directly induced 
from the annotated corpus, the probabilities of these rules are 
not suited to the disambiguation task as yet. It may therefore 
be useful to have the parser use the grammar to practice the 
task of parsing and adjust the probabilistic weights of partic­
ular structures according to these test cases. We then need to 
consider the initial grammar as basic raw material in need of 
optimization, as it is merely a reflection of the original data 
set and is not yet optimized for the task of parsing (unseen) 
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sentences itself. 
Typical methods of probabilistic grammar optimization 

include, among others, bagging and boosting [Henderson 
and Brill, 2000; Collins, 2000], re-estimation of the con­
stituents probabilities [Goodman, 1998; Charniak, 2000] and 
including extra information sources [Belz, 2001; Collins, 
1999]. But we propose an agent-based evolutionary comput­
ing method to resolve this issue. Grammar optimization us­
ing a GRAHL environment is in this vein related to the afore­
mentioned bagging approach to grammar optimization, albeit 
with some notable differences. By distributing the knowl­
edge over a group of agents and having them interact with 
each other, we basically create a multiple-route model for 
probabilistic grammar optimization. Grammatical structures 
extracted from the training corpus, wil l be present in differ­
ent quantities and variations throughout the GRAEL society. 
While the agents interact with each other and in effect prac­
tice the task on each other's grammar, a varied range of prob­
abilistic grammars are optimized in a situation that directly 
relates to the task at hand. The evolutionary aspects of the 
system make sure that, while marginally useful grammatical 
information is down-toned, common constructs arc enforced, 
providing a better balanced model for statistical parsing. 

The way GRAEL accomplishes a re-distribution of the orig­
inal probabilistic values is by using the default GRAEL archi­
tecture described in Section 2. This type of error-driven learn­
ing makes sure that mistakes are being dealt with by transfer­
ring difficult grammatical constructs, thereby increasing their 
probabilistic value in the other agent's grammar. This prob­
abilistic adjustment wil l be taken into account during subse­
quent parsing attempts by this agent, hopefully triggering the 
correct grammatical structure in the future. 

3.1 Exper imental Setup 
The overall setup of the GRAEL experiments is displayed in 
Figure 2. Baseline accuracy is measured by directly induc­
ing a grammar from the training set to power Parser 1, which 
disambiguates the test set. This grammar takes on the form 
of a PMPG as outlined in [De Pauw, 2000] (cf. infra). The 
same training set is also randomly and equally distributed 
over a number of agents in the GRAEL society, who will con­
sequently engage in a number of language games. At some 
point, established by the halting procedure (cf. infra), the so­
ciety is halted and the fittest agent is selected from the society. 
This agent effectively constitutes a redistributed and proba­
bilistically optimized grammar, which can be used to power 
Parser 2. GRAEL-1 accuracy is achieved by having this parser 
disambiguate the same test set. 

We used two data sets from the Penn Treebank [Marcus 
et al.9 1993]. The main batch of experiments was conducted 
on the small, homogeneous ATlS-corpus, which consists of 
a collection of annotated sentences recorded by a spoken-
dialogue system. The larger Wall Street Journal Corpus 
(henceforth WSJ), a collection of annotated newspaper arti­
cles, was used to test the system on a larger scale corpus. The 
common division between training set (Section 02-21) and 
test set (Section 23) was used. Semantically oriented flags 
and numeric flags indicating internal relations were removed 
to allow for more streamlined syntactic processing. 

Figure 2: Comparing parsers: baseline parser and GRAEL 

For syntactic processing, the agents use the parsing sys­
tem PMPG described in [De Pauw, 2000], which integrates 
a CKY parser [Chappelier and Rajman, 1998] and a parse 
forest ranking scheme that employs probabilistic information 
as well as a memory-based operator to maximize for each 
parse the number of nodes that can be retrieved from mem­
ory. A PMPG takes the form of a simple PCFG-type gram­
mar, enriched with numerical indices that encode contextual 
information previously observed in a treebank. This memory-
based instantiation of Data-Oriented Parsing [Bod, 1998] en­
sures that larger syntactic structures are used as the basis for 
parsing, with a minimal loss of computational efficiency over 
regular PCFGs. The PMPG approach can therefore be con­
sidered to introduce a psycho-linguistically relevant memory-
based operator in the parsing process. 

The full experimental run varied society sizes, generation 
methods, fitness functions and halting procedures [De Pauw, 
2002]. The subset of experiments described in this paper em­
ployed the sexual procreation method to introduce new gen­
erations by combining the grammars of two fit agents in the 
society to create new generations of parser agents. The fitness 
of an agent is defined by recording a weighted average of the 
F-score during inter-agent communication (also see Figure 3) 
and the F-score of the agent's parser on a held-out validation 
set. This information was also used to try and halt the so­
ciety at a global maximum and select the fittest agent from 
the society. For computational reasons, the experiments on 
the WSJ-corpus were limited to two different population sizes 
and used an approximation of GRAEL that can deal with large 
datasets in a reasonable amount of time. The test set was not 
used in any way during actual GRAEL-processing in agree­
ment with blind-testing procedures. 
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Table 1: Baseline vs GRAEL-1 results 

3.2 Results 

Table 1 displays the exact match accuracy and F-scores for 
the baseline model, a standard PMPG parser using a grammar 
induced from the training set (cf. Figure 2). It also displays 
scores of the GRAEL system for different population sizes. 
We notice a significant gain for all GRAEL models over the 
baseline model on the ATIS corpus, but increasing population 
size over 20 agents seems to decrease exact match accuracy 
on the ATIS corpus. Likewise, the small society of 5 agents 
achieves only a very limited improvement over the baseline 
method. Data analysis showed that the best moment to halt 
the society and select the fittest agent from the society, is a 
relatively brief period right before actual convergence sets 
and grammars throughout the society are starting to resem­
ble each other more closely. The size of the the society seems 
to be the determining factor controlling the duration of this 
period. 

Preliminary tests on a subset of the WSJ corpus had shown 
that society sizes of 20 agents and less to be unsuitable for 
a large-scale corpus, again ending up in a harmful premature 
convergence. The gain achieved by the GRAEL society is less 
spectacular than on the ATIS corpus, but it is still statistically 
significant. Larger society sizes and full GRAEL processing 
on the WSJ corpus should achieve a more significant gain. 

The experiments do show however, that GRAEL-1 is in­
deed an interesting method for probabilistic grammar redis­
tribution and optimization. Data analysis shows that many of 
the counter-intuitive parse forest orderings that were appar­
ent in the baseline model, are being resolved after GRAEL-
1 processing. It is also interesting to point out that we are 
achieving an error reduction rate of more than 26% over the 
baseline method, without introducing any new grammatical 
information in the society, but solely by redistributing what is 
already there. These experimental results indicate that anno­
tated data can indeed be considered as raw material that can 
be optimized for the practical use of parsing unseen data. 

[De Pauw, 2002] also describes experiments that directly 
compare GRAEL to the similar methods of bagging and boost­
ing [Henderson and Bri l l , 2000], which are summarized in 
the bottom two lines of Table 1. Bagging and boosting were 
shown to obtain significantly lower accuracy figures on al­
most all accounts. Only the F-score for the bagging experi­
ment exceeded that of the optimal GRAEL configuration, but 
this can be attributed to the fact that an approximation of 
GRAEL was used for full processing on the extensive WSJ 

dataset. 

4 GRAEL-2: Grammar Rule Discovery 
The functionality of GRAEL-1 can be extended by only apply­
ing minor alterations to the GRAEL system. With GRAEL-2 
we wish to provide a grammar rule discovery method which 
can deal with the problem of grammar sparseness. Hand­
written and corpus-induced grammars alike have to deal with 
the fundamental issue of coverage. [Collins, 1999] for exam­
ple reports that when using sections 2-21 of the wsj-corpus 
as a training set and section 23 as a test set, 17.1% of the sen­
tences in the test set require a rule not seen in the training set. 
Even for a large corpus such as the WSJ, sparse grammar is 
indeed a serious accuracy bottleneck. 

It would therefore be useful to have a method that can 
take a corpus-induced grammar and extend it by generating 
new rules. But doing so in a blind manner, would provide 
huge, over-generating grammars, containing many nonsensi­
cal rules. The GRAEL-2 system described in this section, in­
volves a distribute d approach to this type of grammar rule dis­
covery. The original (sparse) grammar is distributed among a 
group of agents, who can randomly mutate the grammatical 
structures they hold. The new grammatical information they 
create is tried and tested by interacting with each other. The 
neo-darwinist aspect of this evolutionary system will make 
sure that any useful mutated grammatical information is re­
tained throughout the population, while noise is filtered out 
over time. This method provides a way to create new gram­
matical structures previously unavailable in the corpus, while 
at the same time evaluating them in a practical context, with­
out the need for an external information source. 

To accomplish this, we need to implement some minor al­
terations to the GRAEL-1 system. The most important adjust­
ment occurs during the language games. We refer back to the 
toy example of the language game in Figure 1 to the point 
where agl suggests the minimal correct substructure to ag2. 
In GRAEL-1 this step introduced a form of error-driven learn­
ing, making sure that the probabilistic value of this grammati­
cal structure is increased. The functionality of GRAEL-2 how­
ever is different: in this step, we assume that there is a noisy 
channel between agl and ag2 which may cause ag2 to misun­
derstand agl's structure. Small mutations on different levels 
of the substructure may occur, such as the deletion, addition 
and replacement of nodes. This effectively introduces previ­
ously unseen grammatical data in the GRAEL society, which 
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Table 2: Baseline vs GRAEL-1 vs GRAEL-2 VS GRAEL2+1 
Results 

wil l consequently be optimized over time. 
Preliminary experiments however showed that this does not 

work as such, since the newly created structures were largely 
being ignored in favor of the gold-standard corpus structures. 
We therefore implemented another alteration to the GRAEL-1 
system. Instead of just presenting the tree-structure originally 
assigned by the training set, we now require agl to parse the 
string-only sentence using the grammar acquired during lan­
guage games, replacing the tree-structure from the training 
set, with a possibly different tree-structure that incorporates 
some of the mutated information. This alteration makes sure 
that the mutated grammatical structures are actively being 
used, so that their usefulness as grammatical constructs can 
be measured in a practical context. 

Experimental Setup and Results 
The setup for the GRAEL-2 experiments is the same as for the 
GRAEL-1 experiments (cf. Figure 2). To test the grammar-
rule discovery capabilities of GRAEL-2 we have compiled a 
special worst-case scenario test set for the ATIS corpus, con­
sisting of the 97 sentences in the ATIS that require a grammar 
rule that cannot be induced from the training set. For the 
WSJ-experimentthe normal test set was used. A 20-agent and 
a 100-agent society were respectively used for the ATIS and 
WSJ experiments. 

The baseline and GRAEL-1 methods for the ATIS experi­
ments trivially have an exact match accuracy of 0%, which 
also has a negative effect on the F-score (Table 2). GRAEL-2 
is indeed able to improve on this significantly, proving that it 
is indeed an effective grammar rule discovery method. Data-
analysis shows however that it has lost the beneficial proba­
bilistic optimization effect of GRAEL-1. 

We therefore performed another experiment, in which we 
turned the GRAEL-2 society into a GRAEL-1 society after the 
former's halting point. In other words: we take a society 
of agents using mutated information and consequently ap­
ply GRAEL-1 's probabilistic redistribution properties on these 
grammars. Figure 3 shows the course of the GRAEL2+1 ex­
periment. In this figure we see the F-scores recorded during 
inter-agent communicative attempts. After an almost linear 
increase during GRAEL-2 processing, the society is halted af­
ter an extended period of convergence. Next, GRAEL-1 pro­
cessing resumes, which negatively affects F-scores for a brief 
period of time, until the society reconverges. Even though the 
F-scores do not seem to improve over those observed before 
the transition to GRAEL-1, Table 2 shows that the fittest agent 
selected from the society after the transition performs better 
on the held-out test set. The results on the wsj-corpus are also 

Figure 3: GRAEL2+1 Experiment - F-scores during language 
games 

interesting in this respect. GRAEL-1 outperforms GRAEL-2 
on this data set, but the combination of the two seems to be 
quite beneficial for parsing accuracy. 

Evaluating a grammar rule discovery method poses an em­
pirical problem in that it can never be clear what grammar 
rules are missing until we actually need them. The test set we 
compiled to perform the GRAEL-2 ATis-experiments goes a 
long way in providing a touchstone to see how well GRAEL-
2 performs as a supervised grammar induction method. And 
results indicate it performs quite well: mutated information 
becomes available that is able to create parses for difficult 
constructions, while the number of structures that constitute 
noise is limited and is attributed a small enough portion of 
the probability mass as not to stand in the way of actual use­
ful mutated structures. 

5 Concluding Remarks 
This paper has presented one of the first research efforts that 
introduces agent-based evolutionary computing as a machine 
learning method for data-driven grammar optimization and 
induction. In recent years, many researchers have employed 
ensemble methods to overcome any negative bias their train­
ing data might impose on their classifiers. It is indeed im­
portant to view (annotated) data, not as an optimally dis­
tributed set of examples but as raw material that needs to be 
pre-processed before it can be used by a machine learning 
classifier. The bagging and boosting approach for instance, 
tries to create resamplings of the original data, to overcome 
the local maxima the data might restrict the classifier to, but 
we believe GRAEL adds an extra dimension to the task: by 
splicing the data and incorporating it in a society of commu­
nicating agents, we allow for the parallel development of sev­
eral grammars at once, enhanced in a practical context that 
mirrors the goal itself: parsing unseen data. 

We described two instantiations of the GRAEL environ­
ment. The basic GRAEL-1 system aims to provide a beneficial 
re-distribution of the probability mass of a probabilistic gram­
mar. By using a form of error-driven learning in the course 
of language games between agents, probabilistic values are 
adjusted in a practical context. This optimizes the grammars 
for the task of parsing data, rather than reflecting the prob­
ability mass of the initial data set. This method favorably 
compares to established grammar optimization methods like 
bagging and boosting. 

By adding an element of mutation to the concept of 
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GRABL-1 we were able to extend its functionality and ex­
periment on GRAF.L-2 as a grammar rule discovery method. 
The results showed that GRAEL-2 could produce a broader-
coverage grammar, but that GRAHL-1 's ability to optimize the 
distribution of the probability mass of a grammar was coun­
teracted. A grammar obtained from a GRAiiL-2 society is 
therefore unsuited to be directly applied to parsing. But com­
bining it again with a GRAEL-1 society however, goes a long 
way in resolving this issue, providing a grammar that has a 
broader coverage, as well as a better tuned probability mass 
distribution over the structures contained therein. We there­
fore believe the combination of GRAEL-2 and GRAEL-1 to 
be an interesting optimization toolkit for any given grammar, 
and corpus-induced grammars in particular. It can achieve 
a significant optimization over the baseline method, without 
using an external information source, simply on the basis of 
knowledge transfer and mutation in a practical and evolution­
ary context. 

Acknowledgments 
The research described in this paper was financed by the 
FWO (Fund for Scientific Research). 

References 
[Antonisse, 1991] H. James Antonisse. A grammar-based 

genetic algorithm. In Gregory J. E. Rawlings, editor, 
Foundations of genetic algorithms, pages 193-204. Mor­
gan Kaufmann, San Mateo, 1991. 

[Araujo, 2002] Lourdes Araujo. A parallel evolutionary 
algorithm for stochastic natural language parsing. In 
Proceedings of The Seventh International Conference on 
Parallel Problem Solving From Nature, pages 700-709, 
Granada, Spain, 2002. 

[Batali, 2002] J. Batali. The negotiation and acquisition of 
recursive grammars as a result of competition among ex­
emplars. In Ted Briscoe, editor, Linguistic Evolution 
through Language Acquisition: Formal and Computa­
tional Models, chapter 5. Cambridge University Press, 
2002. 

[Belz, 2001] A. Belz. Optimisation of corpus-derived prob­
abilistic grammars. In Proceedings of Corpus Linguistics 
2001, pages 46-57, Lancaster University, UK, 2001. 

[Bod, 1998] R. Bod. Beyond Grammar—An Experience-
Based Theory of Language. Cambridge University Press, 
Cambridge, England, 1998. 

[Briscoe, 1998] E. Briscoe. Language as a complex adap­
tive system: co-evolution of language and of the language 
acquisition device. In Proceedings of the 8th Meeting of 
Comp. Linguistics in the Netherlands, pages pp. 3-40., 
Amsterdam, 1998. Rodopi. 

[Chappelier and Rajman, 1998] J.-C. Chappelier and M. Ra-
jman. A generalized cyk algorithm for parsing stochastic 
cfg. In Proceedings of Tabulation in Parsing and Deduc­
tion (TAPD '98), pages 133-137, Paris (FRANCE), 1998. 

[Charniak, 2000] Eugene Charniak. A maximum-entropy-
inspired parser. In Proceedings of NAACL'00, pages 132-
139, Seattle, USA, 2000. 

[Collins, 1999] M.Collins. Head-driven Statistical Models 
for Natural Language Parsing. PhD thesis, University of 
Pennsylvania, Pennsylvania, USA, 1999. 

[Collins, 2000] Michael Collins. Discriminative reranking 
for natural language parsing. In Proc. 17th Interna­
tional Conf on Machine Learning, pages 175-182. Mor-
gan Kaufmann, San Francisco, CA, 2000. 

[De Pauw, 2000] G. De Pauw. Aspects of pattern-matching 
in dop. In Proceedings of the 18th International Confer­
ence on Computational Linguistics, pages 236-242, 2000. 

[De Pauw, 2002] G. De Pauw. An Agent-Based Evolutionary 
Computing Approach to Memory-Based Syntactic Parsing 
of Natural Language. PhD thesis, University of Antwerp, 
Antwerp, Belgium, 2002. 

[Goodman, 1998] J. Goodman. Parsing Inside-Out. PhD 
thesis, Harvard University, Massachusetts, USA, 1998. 

[Henderson and Bril l, 2000] J. Henderson and E. Brill. Bag­
ging and boosting a treebank parser. In Proceedings of the 
1st Meeting of the North American Chapter of the Associ­
ation/or Computational Linguistics (NAACL-2000), pages 
34-41,2000. 

[Kirby, 2001] S. Kirby. Spontaneous evolution of linguistic 
structure: an iterated learning model of the emergence of 
regularity and irregularity. IEEE Transactions on Evolu­
tionary Computation, 5(2): 102-110, 2001. 

[Klein and Manning, 2001] Dan Klein and Christopher D. 
Manning. Parsing with treebank grammars: Empirical 
bounds, theoretical models, and the structure of the penn 
treebank. In Prodeedings ofACL-EACL 2001, pages 330-
337,2001. 

[Losee, 1995] R.M. Losee. Learning syntactic rules and tags 
with genetic algorithms for information retrieval and filter­
ing: An empirical basis for grammatical rules. Information 
Processing and Management, 32(2): 185-197, 1995. 

[Marcus et al, 1993] M. P. Marcus, B. Santorini, and M.A. 
Marcinkiewicz. Building a large annotated corpus of 
english: the penn treebank. Computational linguistics, 
19:313-330, 1993. Reprinted in Susan Armstrong, ed. 
1994, Using large corpora, Cambridge, MA: MIT Press, 
273-290. 

[Smith and Witten, 1996] T. C. Smith and I. H. Witten. 
Learning language using genetic algorithms. In Stefan 
Wermter, Ellen Riloff, and Gabriele Scheler, editors, Con-
nectionist, Statistical, and Symbolic Approaches to Learn­
ing for Natural Language Processing, volume 1040 of 
LNAI, pages 132-145. Springer Verlag, Berlin, 1996. 

[Wyard, 1991] P. Wyard. Context-free grammar induction 
using genetic algorithms. In R. Belew and L.B. Booker, 
editors, Proceedings of the Fourth International Confer­
ence on Genetic Algorithms, pages 514-518, San Mateo, 
1991. ICG A, Morgan Kaufmann. 

828 NATURAL LANGUAGE 


