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Abstract 
We present efficient techniques for computing near 
optimal strategies for a class of stochastic com-
modity trading problems modeled as Markov de­
cision processes (MDPs). The process has a con­
tinuous state space and a large action space and 
cannot be solved efficiently by standard dynamic 
programming methods. We exploit structural prop­
erties of the process, and combine it with Monte-
Carlo estimation techniques to obtain novel and ef­
ficient algorithms that closely approximate the op­
timal strategies. 

1 Introduction 
Investment is an act of incurring immediate cost in the ex­
pectation of future rewards. Investments options are typi­
cally characterized by three parameters: the initial and ac­
cumulated costs, the uncertainty over the future rewards, and 
the leeway in timing the actions. Investors try to optimize 
their decision with respect to these parameters. Modern eco­
nomics theory models the uncertainty of future rewards as 
a stochastic process defining future price curves. The pro-
cess is typically an Ito process [Dixit and Pindyck, 1994] that 
is Markovian, thus investment decision can be modeled as 
a Markov decision process (MDP) where a state of the un­
derlying process needs only to include the current investment 
portfolio and current prices. While the MDP gives a succinct 
formalization of the investment decision processes it does not 
necessarily imply efficient algorithms for computing optimal 
strategies. The Markov decision process has a continuous 
state space and a potentially large action space and cannot be 
solved efficiently by standard dynamic programming meth­
ods. A challenging goal in this research area is to character­
ize special cases of the general investment paradigm that are 
interesting enough from the application point of view while 
simple enough to allow efficiently computable analytic solu­
tions. 

In this work we focus on stochastic planning in the context 
of commodity trading. Commodity can be bought, stored and 
eventually sold. In addition to the initial cost of buying the 
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commodity, the investment decision must take into account 
the accumulated cost of storage t i l l the commodity is sold. A 
standard assumption in mathematical economics is that com­
modity prices (e.g oil and copper) are best modeled as a mean 
re verting stochastic process. We study several versions of the 
commodity trading problem. In the simplest version we as­
sume that there are no restrictions on the amount of commod­
ity that an investor can buy, store or sell at a given time. We 
give an efficiently computable optimal analytic solution for 
that case. The problem becomes significantly harder when we 
turn to a more realistic setting in which there are constrains 
on the amount of commodity that a trader can buy store and in 
particular sell at a given time. We present an efficient Monte-
Carlo technique that generates an approximate optimal trad­
ing policy with volume and storage constrains. 

There has been extensive research in Ai in recent years 
on solving MDPs with large state spaces exploiting specific 
problem structures, in particular through factoring and de­
compositions [Boutilier et a/., 1995; Dearden and Boutilier, 
1997; Dean and Lin, 1995; Meuleau et a/., 1998]. How­
ever, all these work assume finite or at least discrete state 
space. Our solution relies on structure analysis of the problem 
combined with a Monte-Carlo approximation technique. We 
show that when prices follow a mean-reverting process, the 
optimal policy for the constrained commodity trading prob­
lem has an elegant compact parametric form. This observa­
tion allows for a significant reduction in the space of possible 
optimal policies. Furthermore, we show that individual pa­
rameters, which represent a stack of decision thresholds, can 
be optimized incrementally thus further reducing the com­
plexity of the problem-solving task. 

2 The Model 
Mathematical economics models commodity price fluctua­
tions as an Ito mean-reverting process (Ornstein-Uhlenbeck 
process) [Dixit and Pindyck, 1994], where changes in price 
satisfy a stochastic differential equation 

such that is the (random) increment of a Wiener process 
(Brownian motion with normally distributed increments), 
is the long term average price of the commodity i.e. a value 
to which the process reverts, is the speed of reversion, and 

is the standard deviation of the random component. 
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Trading occurs at discrete time steps, and price fluctuation 
between two consecutive steps is modeled by the discrete ver­
sion {Dixit and Pindyck, 1994]: 

0) 
where is a sequence of independent random variables with 
normal distribution  

The agent (investor) can buy and sell the commodity at dif­
ferent time steps. There is a fixed cost for storing a unit of 
community for a unit time interval. The cost of money (the 
interest rate) is denoted by We assume that the volume of 
commodity traded by the agent is small with respect to the to­
tal market of that commodity, so that the agent's strategy does 
not affect the above parameters. In the more general setting 
there are limits on the number of units a trader can buy and 
sell in every step, and on the total number of units that can be 
stored (denoted respectively). 

Objectives 
Our goal is to determine the best, profit maximizing, trading 
strategy for a given initial state, which is determined by the 
current price and amount of commodity the agent owns. We 
use the standard valuation method, the expected net present 
value (NPV) function (see e.g. [Brealey and Myers, 1991; 
Trigeorgis, 19961)): 

where s denotes an initial state, is a strategy, is a 
discount factor, is the decision horizon, and Mt is cash flow 
at time Thus our goal is to find such that (s) is maxi­
mized. The objective function corresponds to discounted ver­
sions of standard finite or infinite horizon criteria (see [Bell-
man, 1957; Puterman, 1994]) where rewards correspond to 
cash flows. 

In the following we focus on the infinite horizon invest­
ment problem. The trading strategy for this case is repre­
sented as mapping the current price pt and 
number of units of commodity we own to the number of 
units to be held in the next step The results for the 
infinite trading horizon can be adopted to the finite horizon 
problem. 

Example 
Our model fits a variety of applications. A typical example 
is oil-trading problem. Oil can be bought and sold in the 
market. The changes of oil prices on the market follow the 
mean reverting process (Dixit and Pindyck, 1994] and indi­
vidual trading activities do not affect the market price. Oil 
can be stored at a fixed cost per unit, and there are obvious 
constraints on the amounts that can be stored and released in 
short time intervals. 

3 Standard approach and its shortcomings 
The value (expected NPV) of a strategy can be expressed 
using the Bellman equation [Bellman, 1957]: 

where a state is a cross-product of a commodity price and 
the amount of commodity held denotes the 
expected one-step cash flow resulting from action 
maps the current commodity holdings to the next state com­
modity holdings under the action dictated by the policy and 

denotes a distribution of next state prices (a normal 
distribution defined by Equation 1). In general it is extremely 
hard to evaluate a given strategy because of the size of a state 
space we face (in one step we can reach any price) and there 
is no closed form solution to the integral part. The task of 
finding the optimal policy is even worse as the space of poli­
cies we need to choose from is even larger. Thus, standard 
dynamic programming approaches cannot be applied directly 
and we must resort to methods that exploit the problem struc­
ture. 

4 Trading without constraints 
To solve the case with no limits on buy, sell and store activi­
ties, it is sufficient to study the problem of investing one unit 
of commodity, since the strategy for one unit can be replicated 
for any number of units. 

A strategy for the one-unit problem at any point in time 
is restricted to only two choices: 0 (do not invest, do not 
hold the commodity) and 1 (hold, invest in the commodity). 
Because buy and sell prices are always the same and prices 
change independently of our trading, the expected net present 
value of a one-unit strategy can be expressed in terms 
of step-wise gains: 

where is the gain from time step  
is a fixed storage cost, if the strategy chooses to 
hold the commodity at time and when not. 

Intuitively, we can replicate payoffs from any strategy by 
always selling the commodity held at the end of the step and 
buy it back when the strategy requires us to hold the com­
modity in the next time step. The term reflects the fact 
that we always sell (pretend to sell) the initial commodity at 
price Thus, we can restrict our search to policies of the 
form mapping prices to actions. The value 
function for such a policy can be rewritten as: 

where is the value function for the policystarting  
from a zero commodity state. satisfies 

(2) 

is the expected gain for holding the commodity for 
one step starting from price  

denotes the next step price, is a storage cost and 
is the expected next step price. A nice feature of 

Equation 2 is that the contribution from following the policy 
in the future (integral part) is independent of the action choice 

HAUSKRECHT, PANDURANGAN, AND UPFAL 1311 



in the first step. This leads to the fact that the greedy one-step 
lookahead strategy is optimal.1 

Theorem 1 The strategy n maximizingthe expected one-step 
gain is optimal. 
Proof Follows directly from Equation 2 and the indepen­
dence of future values on current actions. 

The value of the optimal one-unit policy can be written as: 

(3) 

with denoting the expected gain for holding 
zero units of commodity. The optimal policy satisfies: 

The important thing about this is that we know how to find the 
optimal policy easily and this despite the fact that its value is 
hard to compute. 

4.1 Decision threshold 
As the expected gain from not holding the commodity is 
0, the choice to hold the commodity is justified only when 

that is, when the expected gain is positive. 
Substituting using equation 1, we get the condition for 
choosing the "hold" action: 

(4) 

Thus, we obtain a simple and compact policy: Hold the com-
modity when the price is lower than Note that the op­
timal threshold price depends solely on the parameters of 
the mean reverting process and discount  

5 Trading with constraints 
We consider three types of constraints: buy, sell and store 
limits. We start with buy and store constraints. 

5.1 Buy and store constraints 
The buy and store constraints are relatively easy to handle 
when no restriction on the sell is imposed Simply, we al-
ways want to take the maximum advantage of a positive gain 
for investing in the next step. Thus, we always hold the max­
imum amount of commodity allowed by the buy and store 
limits, whenever the optimal one-unit policy recommends to 
hold. That is: 

denote buy and store constraints. 

1 We note the optimality of a greedy one step lookahead strategy 
holds not only for the mean reverting process, but also for a more 
general Ito process. 

5.2 Sell l im i t problem 
The sell limit is tricky, since .trader may not be able to im-
mediately realize all gains if he holds more units than the sell 
l imi t A naive solution would be to limit the holding to the 
sell limit, but such policy is obviously sub-optimal. 

In studying this case we can assume w.l.o.g. that the sell 
limit is 1. The solution for an arbitrary sell constraint 
1 is then obtained by replicating the optimal strategy with sell 
limit 1. In the following we first study a special case in which 
a trader is allowed to hold at most 2 units of commodity (with 
sell constraint 1) and find the corresponding optimal policy. 
Later we generalize the idea to any number of units. 

5.3 Trading two units under sell l im i t 
To solve the two units case we restrict our attention to strate­
gies that always try to trade the first unit using the optimal 
one-unit strategy. Then our goal is to simply find how and 
when to invest in the second commodity. We show later that 
this approach indeed leads to the optimal solution. 

Let be a set of policies mapping cur­
rent prices to commodity choices, such that always follows 
the optimal one-unit strategy for the first unit and chooses to 
hold the second unit arbitrarily but only when Thus 

is described as: 

Note that a strategy may not be directly appli­
cable to the two-unit case and can violate the sell capacity. 
This happens when recommends to hold two units of the 
commodity for some price in one step and is forced to 
recommend 0 units when the next step price jumps above 

To fix this problem we define a set of policies II2, such 
that for every there is a policy  

mapping current price and current commodity 
holding to the next step commodity choice and is defined as: 

(5) 
The idea behind TI2 is that it replicates when it is consistent 
with sell constraints, otherwise it recommends to reduce the 
number of units of commodity held by 1. Because induces 

we call it a generating policy. 
To find the optimal investment rule for the second unit we 

try to quantify its added value. To do this, we create a strategy 
that recommends to hold two units of commodity when 

and this only for the first step, otherwise it follows the 
optimal one-unit policy. The value for such a policy for price 

and zero units of commodity in terms of gains is: 

Note that due to the sell limit the second unit of commodity 
is always held also in the second step. This is captured by the 
term The key trick now is to rewrite for 
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where 

(6) 

is the expected added gain for investing in the second unit of 
commodity for represents the difference 
from investing in the second unit of commodity at 
compared to the optimal one-unit strategy. It consists of two 
terms: the expected gain from holding the commodity for one 
step plus a correction term (a kind of expected loss or negative 
gain) for holding it one more step in the case we would like 
to sell it but sell constraint does not allow us to 
do that. Note that depends solely on the price of a 
commodity and also  

The other important feature is that by substituting (p, 0) 
from Equation 3, the value equals: 

which means that the integral part of the expression now be­
comes independent of the commodity held in the first step and 
disregards any units we were not able to sell. Intuitively, un­
der expectations, the term allows us to pretend that 
we were able to sell both units at the end of the previous step 
without restriction, though in reality when the price climbs 
above we have to keep one unit and sell it later when the 
sell capacity is available. 

Using the fact that allows us to disregard any 
commodity left from previous steps we can express the value 
function for an arbitrary policy as 

The theorem shows how to get the optimal policy from 
TI for the zero commodity start state. This policy can be 
applied also to the non-zero commodity state in a straightfor-
ward way. 

Up to this point we know how to find the best (optimal) 
policy from This policy is no worse than that 
trades only one unit (simply because However, this 
does not necessarily imply that the optimal two-unit strategy 

is also globally optimal. 
Theorem 3 is the optimal two-unit strategy. 
Proof To prove this we need to show that the optimal policy 
always resides in The opposite can happen only when: 
(1) the optimal strategy is not incremental (the optimal choice 
for the first unit does not imply the optimal choice for two 
units case) and (2) the optimal strategy depends on c, such 
that the relation is not captured by Equation 5 and 
relation). 

The incremental property follows from the fact that the 
maximum gain we can capture by any unit is which 
equals the expected gain for the first unit. Thus the policy 
must always trade the first unit optimally. Using the incre­
mental result, the relation in Equation 5 can be violated only 
when the globally optimal policy at some point recommends 
to hold 2 units and does not, or vice versa. However, 
this cannot happen as it would mean that we choose to hold 
the second unit when is negative or not to hold it 
when it is positive. Thus must be the optimal policy. 

Threshold price for the second unit 
The optimal two-unit strategy says that we want to invest into 
the second unit only when The question now 
is if we can come up with a compact representation of this 
condition, similarly to the threshold price for the one-unit 
case. Indeed, we can show that if ever becomes 
positive, there is a unique threshold value such that when 

then is guaranteed. This follows di­
rectly from the monotonicity of which we prove 
next. 
Theorem 4 For it holds  
Proof In order to prove for  
it is sufficient to show, using Equation 6, that 

hold. This is trivial and follows from the monotonicity of 
and the fact that and define nor­

mal distributions with means and the 
same standard deviation.  

The main consequence of being monotonically 
decreasing is that there is a unique zero point such that 
for any 0. Therefore, the optimal gen­
erating strategy for trading two units of commodity (with 
the sell constraint 1) can be defined compactly using a set of 
threshold prices such that 

HAUSKRECHT, PANDURANGAN, AND UPFAL 1313 

For zero units of commodity the policy always equals its 
generating (see equation 5) and therefore 

This means that if we want to find the optimal from 
we can do it by simply finding the optimal from  

Theorem 2 The optimal two-unit strategy max-
imizing is defined by a strategy maximizing 

Proof Using Equation 7, and the fact that the integral part 
becomes independent of the amount of commodity we actu­
ally held in the previous step, we can maximize the value of 
a policy by maximizing the sum of expected gains. That is: 



The optimal strategy is then compactly represented 
as: 

5.4 Trading -units under sell l im i t 
In principle the same ideas as used for the two-unit case can 
be applied to find the optimal strategy for trading at most 

units of commodity. Such a policy is guaranteed to be no 
worse than the policy for trading smaller number of units. 
We summarize the main results and conclusions, the detailed 
analysis is deferred to the full paper. 

The expected added gain from holding unit of com­
modity is defined recursively as: 

A nice property of is that it is monotonically de-
creasing in p and  

The optimal generating policy 
equals: 

can be described compactly using a set of threshold values 
such that: 

where thresholds are unique zero points 
The optimal policy  

for the sell limit 1 can be then compactly rep­
resented as: 

5.5 Solution for buy, sell and store l imits 
The optimal policy for at most units of commodity and the 
sell constraint can be derived directly from the 
solution for the sell limit 1: 

Adding buy and store constraints to this result is easy and 
results in the following policy: 

6 Finding optimal thresholds 
The optimal policy for units can be represented com­
pactly using a set of threshold prices The 
threshold price for unit is the zero of the the ex­
pected added gain for the unit = 0. As 
the value of depends only on threshold prices 

the set of threshold prices can be built 
incrementally. 

The main problem in this process is that there is no 
closed form solution for finding the zero point of  

Figure 1: The optimal generating policy with sell limit 1, 
100, 0.6, 10, 0.9975, 0.2. Stepwise 

changes reflect positions of thresholds. 

is the only exception). Thus, in order to find the 
threshold values for we resort to stochastic (Monte 
Carlo) approximation techniques (see [Kushner and Yin, 
1997]). In particular we use the Robbins-Monro scheme, 
which finds the zero of the function iteratively us­
ing the update 

where, is the price value at the iteration, is  
the "noisy" estimate of the function at ob­
tained by Monte Carlo sampling from Equation 8. The se­
quence e„ is used to "average out" the "noisy" estimates 
from the Monte-Carlo sampling. We use the standard se­
quence , which converges (under reasonable 
assumptions) to the zero value with probability one. Since 

is monotonous there is a unique root such that 
[Kushner and Yin, 1997] also give more 

details on the rate of convergence. 
The process for finding new thresholds can be applied in­

crementally to find the solution for an arbitrary number of 
units. The issue that remains open is that there can be an 
infinite number of thresholds to define the complete solution. 
However, thresholds for larger values of are less likely to be 
used, as they cover the range of prices with extremely small 
chance of occurrence. Thus if the initial price is in a reason­
able range more complex policies tend to contribute less. 

To provide for more robustness, we propose an on-line al­
gorithm that keeps building thresholds on the demand basis. 
That is, only when price encountered in not covered by a 
current set of thresholds, we start to work on thresholds for 
higher values of Note that this algorithm can be further re­
fined into an anytime scheme [Dean, 1991], suitable for time 
critical settings. 

7 Experimental results 
We have tested our approach on several sets of parameters. 
Figure 1 illustrates a typical policy. To find the zero points of 
expected added gain functions, we used the basic 
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Expected gains 

Figure 2: Average NPV for strategies with varying number of 
thresholds and different initial prices. 

Robbins-Monro algorithm for 10,000 steps. We use the av­
erage of 100 runs. The thresholds were computed incremen­
tally starting from The interesting observation is that for 
larger values of thresholds become about equally spaced. 
In such a situation the policy can be more compactly rep­
resented using a linear function, directly mapping prices to 
recommended commodity holdings. 

The effect of strategy refinement (adding more thresholds 
and potentially investing more units) on the quality of the so­
lution is illustrated in Figure 2. The results show average 
profit over 1000 runs for different policies and different start­
ing prices. We see that more complex policies with more 
thresholds tend to improve the profit performance initially. 
This effect becomes less significant for larger and ex­
pected profits converge to the optimal value Since the 
prices reach lower values very rarely, the probability of us­
ing thresholds for larger is very small and corresponding 
more complex policies are only rarely utilized. 

8 Conclusion 
We have presented an efficient method for finding the near 
optimal policies for the commodity planning problem with 
trading and storage constraints. The problem has continuous 
state space and large action space and cannot be solved ef­
ficiently by standard dynamic programming solutions. Our 
solution relies on the analysis of the domain and takes advan­
tage of a problem structure and Monte Carlo approximation 
techniques. We showed that the optimal policy for the com­
modity trading problem with a mean-reverting price model 
and trading constraints can be represented compactly using a 
stack of decision (price) thresholds for investing in additional 
units of commodity. The thresholds correspond to zero points 
of expected added gain functions, which we also derived. 
As these functions do not have analytical solution, we ap­
ply Monte Carlo approximation techniques to find their zero 
points. The properties of the functions guarantee uniqueness 
of the solution and convergence of the approximation scheme. 

Interesting questions and opened issues that remain to be 

addressed include the theoretical bound on the number of 
thresholds necessary to guarantee the near optimal strategy, 
and exploration of more compact parametric representations 
of the policy, mapping prices to the number Of units to hold 
directly (these would eliminate the need to remember all 
threshold values). Finally, a number of interesting problems 
wil l arise if we relax some of the current assumptions of 
the model. Possible refinements may include price spreads, 
concurrent trading at multiple interconnected sites, or de­
mand/supply sensitive price models. 
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