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ABSTRACT 

This paper introduces a formal method f o r 
i n t e g r a t i n g knowledge derived from a va r i e t y of 
sources f o r use in "perceptual reasoning."* The 
formalism is based on the " e v i d e n t i a l p ropos l t l ona l 
c a l c u l u s , " a d e r i v a t i v e of Shafer 's mathematical 
theory of evidence [ 4 ] . I t is more general than 
e i t h e r a Boolean or Bayeslan approach, prov id ing 
f o r Boolean and Bayeslan in ferenc lng when the 
appropr ia te in fo rmat ion i s ava i l ab le . In t h i s 
formal ism, the l i k e l i h o o d of a p ropos i t ion A is 
represented as a sub in te r va l , [ s ( A ) , p ( A ) ] , of the 
u n i t i n t e r v a l , [ 0 , 1 ] . The e v i d e n t i a l support f o r 
p ropos i t i on A is represented by s (A) , whi le p(A) 
represents i t s degree of p l a u s i b i l i t y ; p(A) can 
a lso be i n te rp re ted as the degree to which one 
f a i l s to doubt A, p(A) being equal to one minus the 
e v i d e n t i a l support f o r "A. This paper describes 
how e v i d e n t i a l i n fo rma t ion , furnished by a 
knowledge source in the form of a p r o b a b i l i t y 
"mass" d i s t r i b u t i o n , can be converted to t h i s 
i n t e r v a l represen ta t ion ; how, through a set of 
in ference ru les f o r computing in terva ls of 
dependent p ropos i t i ons , t h i s In format ion can be 
ex t rapo la ted from those proposi t ions i t d i r e c t l y 
bears upon, to those i t i n d i r e c t l y bears upon; and 
how m u l t i p l e bodies of e v i d e n t i a l In format ion can 
be pooled* A sample app l i ca t i on of t h i s approach, 
modeling the operat ion of a c o l l e c t i o n of sensors 
(a p a r t i c u l a r type of knowledge source), 
i l l u s t r a t e s these techniques. 

I INTRODUCTION AND OVERVIEW 

We are pursuing a program of research aimed at 
developing a computer-based c a p a b i l i t y f o r 
"perceptua l reasoning" [2] that w i l l make i t 
poss ib le to I n t e r p r e t important aspects of a 
s i t u a t i o n from in fo rmat ion obtained by a c o l l e c t i o n 
of d ispara te sensors. S i t ua t i ona l assessment 
Impl ies the need to integrate sensory in format ion 
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w i t h a body of re levant " e x p e r t i s e , " or p r i o r 
knowledge. This in tegra t ion poses a number of 
d i f f i c u l t t echn ica l problems tha t must be examined. 

Among the problems focused upon in our work 
are the f o l l o w i n g : 

* How to model sensors and other knowledge 
sources (KS), so as to know which 
s i t u a t i o n s they can provide In format ion 
about and how to i n t e r p r e t t h e i r responses. 

* How to e f f e c t i v e l y combine (sometimes 
con t rad ic to ry ) i n fo rmat ion from m u l t i p l e 
knowledge sources to compensate f o r t h e i r 
I n d i v i d u a l de f i c i enc ies . 

* How to au tomat ica l l y devise a da ta-
a c q u l s l t l o n / s e n s o r - u t l l i z a t l o n s t ra tegy to 
maximise o v e r a l l system e f f ec t i veness . 

In t h i s paper we s h a l l concentrate on the 
approach to sensor modeling and knowledge 
i n t e g r a t i o n tha t i s cu r ren t l y under i n v e s t i g a t i o n . 
These form the core of the o v e r a l l system. 

A. Previous Work 

E a r l i e r research [ 1 , 2, 3] l ed to a number of 
important conclusions regarding the i n teg ra t i on of 
perceptual In fo rmat ion . F i r s t , because of the 
v a r i e t y of knowledge types requ i red and the 
p a r t i c u l a r uses of each, i t became apparent tha t a 
p r o l i f e r a t i o n of spec ia l i sed representat ions was 
i n e v i t a b l e . This is a departure from standard 
approaches tha t attempt to develop a representa t ion 
of s u f f i c i e n t scope to encompass a l l of the 
knowledge needed by a system. Use of nonmonoli thlc 
representat ions al lows KSs to perform e f f i c i e n t 
operat ions on widely d i ve rse , l o c a l l y appropr ia te 
data formats . However, the problem then becomes 
one of somehow connecting these KSs in a f l e x i b l e , 
e f f e c t i v e manner. 

We formulated several requirements of a 
reasoning paradigm f o r the combination and 
ex t rapo la t i on of e v i d e n t i a l i n fo rmat ion from 
disparate KSs. Whereas e a r l i e r work has focused 
upon a Bayeslan-based p r o b a b i l i s t i c scheme, we f e e l 
tha t t h i s is too r e s t r i c t i v e . A l i k e l i h o o d 
represented by a po in t p r o b a b i l i t y value is usua l l y 
an overstatement of what is a c t u a l l y known, 
d i s t o r t i n g the ava i l ab le p r e c i s i o n . 
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In p a r t i c u l a r , there is no adequate, non-ad hoc 
representa t ion of ignorance w i t h i n a Bayeslan 
framework. 

Another problem w i t h a Bayeslan approach to 
the modeling o f b e l i e f i s the d i f f i c u l t y o f 
ensuring and main ta in ing consistency in a 
c o l l e c t i o n o f i n t e r r e l a t e d p ropos i t i ons . This 
d i f f i c u l t y a lso stems from the need to assign po in t 
p r o b a b i l i t y va lues , even when the under ly ing models 
from which these values are der ived are incapable 
of supply ing such precise da ta . 

There are many occasions when the in ference 
technique of choice is p r o b a b i l i s t i c reasoning 
( e . g . , p a r t i c u l a r l y when reasoning is done w i t h 
data c lose to the s igna l l e v e l ) , and other 
occasions when a (Boolean) l o g i c a l formalism is 
p re fe r red ( e . g . , when t r y i n g to combine "h igher -
l e v e l " knowledge). To avoid an ad hoc approach to 
" g l o b a l " knowledge i n t e g r a t i o n , the inference 
paradigm should f low smoothly from a p r o b a b i l i s t i c 
technique to a l o g i c a l one, as the propos i t ions in 
quest ion become more near ly t rue or f a l se . In 
a d d i t i o n , whenever the under ly ing model is complete 
and cons is tent enough f o r t r a d i t i o n a l methods to be 
e f f e c t i v e , the technique should reduce to a 
Bayeslan paradigm. 

B. 

The representa t ion we have adopted to s a t i s f y 
the preceding requirements f o r the i n teg ra t i on of 
g loba l knowledge is based on the work of Shafer 
[ 4 ] . I t expresses the b e l i e f in a p ropos i t i on A by 
a sub ln te rva l ( s (A ) ,p (A ) ] o f the u n i t i n t e r v a l , 
[ 0 , 1 ] . The lower va lue , s ( A ) , represents the 
"suppor t " f o r tha t p ropos i t i on and sets a minimum 
value f o r i t s l i k e l i h o o d . The upper va lue , p (A) , 
denotes the " p l a u s i b i l i t y " of tha t p ropos i t i on and 
es tab l ishes a maximum l i k e l i h o o d . Support may be 
I n te rp re ted as the t o t a l p o s i t i v e e f f e c t a body of 
evidence has on a p r o p o s i t i o n , wh i le p l a u s i b i l i t y 
represents the t o t a l extent to which a body of 
evidence f a l l s to r e fu te a p r o p o s i t i o n . The degree 
of uncer ta in ty about the ac tua l p r o b a b i l i t y value 
f o r a p ropos i t i on corresponds to the w id th of i t s 
i n t e r v a l . As w i l l be shown, t h i s representa t ion 
w i t h the appropr ia te in ference ru les s a t i s f i e s the 
requirements es tab l ished above. 

In the remainder of t h i s paper, we s h a l l 
demonstrate Dempster's r u l e of combination [A] f o r 
poo l ing e v i d e n t i a l in fo rmat ion from independent 
knowledge sources, present an Inference mechanism 
f o r updat ing p ropos i t i on i n t e r v a l s based on other 
dependent p ropos i t i on i n t e r v a l s , and demonstrate 
t h e i r use in sensor modeling and i n t e g r a t i o n . 

II KNOWLEDGE REPRESENTATION AND INFERENCE 

in what we c a l l the " e v i d e n t i a l p ropos i t i ona l 
c a l c u l u s , " we represent a p ropos i t i on using the 
f o l l ow ing no ta t i on : 

A [ s ( A ) , p ( A ) ] , 
where A is the p r o p o s i t i o n , s(A) the support f o r 
the p ropos i t i on , and p(A) I t s p l a u s i b i l i t y . p(A) 
is equivalent to i - s ( ~ A ) , the degree to which one 
f a l l s to doubt A. The I n t e r v a l [ s (A ) , p (A ) l Is 
ca l l ed the " e v i d e n t i a l i n t e r v a l . " The uncer ta in ty 
of A, u (A) , corresponds to p (A ) -s (A ) . I f u(A) is 
zero f o r a l l p ropos i t i ons , the system is Bayeslan. 

The fo l l ow ing examples i l l u m i n a t e some 
important po in t s ; 

A• Dempster's Rule of Combination 

Dempster's ru l e is a method of i n t e g r a t i n g 
d i s t i n c t bodies of evidence. This is most eas i l y 
introduced through the f a m i l i a r formalism whereby 
propos i t ions are represented as subsets of a g iven 
s e t , here re fe r red to as the "frame of discernment" 
(denoted 6 ) . When a p ropos i t i on corresponds to a 
subset of the frame of discernment, i t is sa id to 
be "d i sce rned . " The primary advantage of t h i s 
formalism i s that i t t rans la tes the l o g i c a l not ions 
of con junc t ion , d i s j u n c t i o n , i m p l i c a t i o n , and 
negation into the more graph ic , s e t - t h e o r e t i c 
not ions of i n t e r s e c t i o n , un ion , i n c l u s i o n , and 
complementation* Dempster's ru le combines 
e v i d e n t i a l in fo rmat ion expressed r e l a t i v e to those 
propos i t ions discerned by O. 

1. Single Be l ie f Functions 

We assume that a knowledge source, KS1, 
d i s t r i b u t e s a u n i t of b e l i e f across a set of 
p ropos i t ions f o r which i t has d i r e c t evidence, i n 
p ropor t ion to the weight of tha t evidence as i t 
bears on each. This is represented by a f u n c t i o n : 

For example, i f no In format ion is ava i l ab le 
concerning two I n i t i a l l y exc lus ive and exhaustive 
p o s s i b i l i t i e s , in a Bayeslan framework they are 
usua l l y assigned a p r o b a b i l i t y of . 5 . This Is 
q u i t e d i f f e r e n t from spec i f y ing tha t noth ing i s 
known regarding such propos i t ions . 

Those propos i t ions are re fe r red to as the KS's 
" f o c a l elements*" 
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m1(Ai) represents the po r t i on of b e l i e f that KS1 
has committed exact ly to p ropos i t i on A i termed i t s 
"basic p r o b a b i l i t y mass." m1 can be depicted as a 
p a r t i t i o n e d u n i t l i n e segment, the length of each 
subsegment corresponding to the mass a t t r i b u t e d to 
one of I t s f o c a l elements (Figure 1 ) . Any mass 
assigned to O represents the res idua l "unce r ta in t y " 
of the KS d i r e c t l y . That is, m1(O) is the mass 
tha t could not be ascr ibed to any smal ler subset of 
6 on the basis of the evidence at hand, but must 
Instead be assumed to be d i s t r i b u t e d in some 
(unknown) manner among the propos i t ions discerned 
by 9. A s i m i l a r I n t e r p r e t a t i o n is given to mass 
assigned any (nonunl t ) s e t . 

Once mass has been assigned to a sec of 
p ropos i t i ons , the e v i d e n t i a l i n t e r va l can be 
determined d i r e c t l y . Support f o r a p ropos i t ion A 
is the t o t a l mass ascr ibed to A and to its subsets; 
the p l a u s i b i l i t y of A is one minus the sum of the 
mass assigned to ~A and to subsets of "A; the 
uncer ta in ty of A is equal to the mass remaining, 
i . e . , tha t a t t r i b u t e d to supersets o f A, inc lud ing 
©. 

2. Composition of Mass Functions 

If the b e l i e f f unc t i on of a second KS, 
KS2, is a lso prov ided, the in format ion suppl ied by 
these KSs can be pooled by computing the 
"or thogonal sum;" t h i s computation is i l l u s t r a t e d 
by the u n i t square in Figure 2. 

To combine the e f f ec t s of KS1, and KS2, 
we consider the u n i t square as represent ing the 
combined p r o b a b i l i t y mass of both KSs; KS1 
p a r t i t i o n s the square into v e r t i c a l s t r i p s 
corresponding to its f oca l elements, whi le KS2 
p a r t i t i o n s i t into hor i zon ta l s t r i p s tha t 
correspond to its f o c a l elements. For example, 
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thereby res to r i ng the t o t a l p r o b a b i l i t y mass to 
one. 

There are several points of I n te res t w i th 
respect to Dempster's ru le of combination. The 
operat ion is commutative; t he re fo re , the order of 
combination is Immater ia l . The operat ion is a lso 
assoc ia t i ve , a l l ow ing the pal rwise compositions of 
a sequence of KSs. When two Bayesian mass 
funct ions are combined, one assoc ia t ing i t s f u l l 
u n i t of mass w i t h a s ing le p r o p o s i t i o n , the 
r e s u l t i n g support and p l a u s i b i l i t y values are the 
expected Bayeslan cond i t i ona ls . Yet when only less 
precise in fo rmat ion is a v a i l a b l e , I t too can be 
exp lo i ted . 

The degree of c o n f l i c t between two KSs 
can be measured i n t u i t i v e l y by the s ize of the 



f a c t o r k. The greater the value of k, the greater 
the degree of c o n f l i c t between the two KSs. When k 
la one, the KSa are I r r e c o n c i l a b l y d i f f e r e n t and 
the or thogonal sum doea not e x i s t . 

B. In ference Rules 

In a d d i t i o n to a technique f o r poo l ing 
d i s t i n c t bodies of evidence, r u l es are needed that 
a l l ow e v i d e n t i a l i n fo rmat ion to be t rana la ted from 
thoae p ropos i t i ons i t bears upon d i r e c t l y to those 
it beara upon i n d i r e c t l y . These ru lea are baaed on 
the f o l l o w i n g two p r i n c i p l e s of e v i d e n t i a l suppor t : 

* The p ropos i t i on corresponding to the frame 
of discernment alwaya receives f u l l 
suppor t . 

* Any support committed to a p ropos i t i on is 
thereby committed to any other p ropos i t i on 
i t i m p l i e s . 

From the f i r s t p r i n c i p l e we know that s (6) -
p(8) - 1. The second p r i n c i p l e d i c t a tes tha t any 
support committed to a subset of the frame of 
discernment i s thereby committed to I t s supersets . 
Th is fo l lows because one p ropos i t i on imp l ies 
another i f i t l a a subset o f tha t p ropos i t i on i n 
the frame of discernment. Of the t o t a l aupport 
committed to a g iven p ropos i t i on A, some may be 
committed to one or more proper aubaeta of A, wh i l e 
the reat is committed exac t l y to A —and to no 
smal ler subset , i . e . , m(A). I f i t l a assumed tha t 
a knowledge source expresses i t s e l f in terms of 
support and p l a u s i b i l i t y est imates f o r a se lected 
set of p ropos i t ions from the frame of discernment, 
a aet of in ference ru lea a l lows these est imates to 
be t rana la ted from p ropos i t i on to p r o p o s i t i o n , 
thereby reducing u n c e r t a i n t y . A sampling of theae 
ru lea f o l l o w s . The statements above the l i n e in 
each ru l e a l low the statement below the l i n e to be 
i n f e r r e d . 

As can be eas i l y shown, when propos i t ions are 
known to be t rue or f a l se ( tha t i s , when t h e i r 
corresponding b e l i e f I n t e r v a l s become e i t h e r [ 0 ,0 ] 
or [ 1 , 1 ] ) , these ru les reduce to the corresponding 
ru les of the p r o p o s i t i o n a l ca l cu l us . Thus, when 
appropr ia te knowledge e x i s t s , t h i s method w i l l 
enable eaay t r a n s i t i o n from a p r o b a b i l i s t i c 
in ference computation to the standard p ropos i t i ona l 
ca l cu lus . 

I l l EXAMPLE: MODELING A KNOWLEDGE SOURCE 

As our i n t e n t i o n has been to t r e a t sensors as 
spec ia l i zed KSs, in t h i s sec t ion we s h e l l descr ibe 
an approach to modeling such a KS. We s h a l l begin 
by d iscussing the usual parameters measured by a 
(hypo the t i ca l ) sensor, i l l u s t r a t i n g how, f o r t h i s 
simple example, these measurements are converted to 
hypotheses by the inference mechanism. 

A. Sensor Measurements 

We assume thet c o l l e c t i o n s of electromagnet ic 
s igna l " e m i t t e r s " deployed in var ious 
con f igu ra t ions comprise the s i t u a t i o n o f i n t e r e s t . 
Measurements of c h a r a c t e r i s t i c s of the s igna ls 
emit ted by these devices w i l l be used to formulate 
hypotheses about t h e i r i d e n t i t i e s . In the complete 
system, these hypotheses w i l l in te rac t w i t h those 
der ived from other KSs to create a more 
comprehensive p i c t u r e of the s i t u a t i o n . Let us 
f i r s t concern ourselves w i t h a s ing le KS and then 
show how it may be composed w i t h other KSs. 

1 . Emi t ter Charac te r i s t i cs 

In t h i s example, en emi t te r w i l l r ed ia te 
e pulsed radar s i gna l whose pe r t i nen t 
c h a r a c t e r i s t i c s w i l l inc lude the c a r r i e r frequency 
( r f ) and the pulse w id th (pw), which are measured 
d i r e c t l y by the rece i ve r . For the example we 
assume tha t the emi t te rs of in te res t ere of types 
E l , E2, E3, B4, or B5. The goal of the program is 
to i d e n t i f y a s i gna l as having o r i g i na ted from one 
of those types . 
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The In format ion about the parameter 
values l i k e l y to be exh ib i t ed by an emi t t e r is 
presented in the form of parameter d i s t r i b u t i o n 
graphs—for example, as shown in Figure 3. These 
curves indicate the p r o b a b i l i t y tha t any g iven 
emi t t e r (of the type ind icated) w i l l have a 
s p e c i f i c parameter va lue; the t o t a l area under each 
curve is one. 

A t y p i c a l approach to i d e n t i f y i n g an 
emi t te r is to look up the measured parameters in a 
t ab le . I n a d d i t i o n t o d i f f i c u l t i e s t raceable t o 
the s t a t i c nature o f the tab le ( e . g . , em i t te r 
c h a r a c t e r i s t i c s are not expected to remain s tab le 
and constant in ac tua l ope ra t i on ) , the technique 
gives l i t t l e In fo rmat ion regarding the r e l a t i v e 
l i k e l i h o o d s of ambiguous i d e n t i f i c a t i o n s . 

2. Sensor Charac te r i s t i cs 

A sensor ( rece ive r ) w i l l spec i fy a range 
of possib le values f o r the measured emi t te r 
parameter, as determined by the r e s o l u t i o n of the 
sensor 's measurements. For example, the rece iver 
may spec i fy an e m i t t e r ' s frequency value as l y i n g 
w i t h i n a band of f requenc ies , say from 
5.5 to 5.6 GHz. S i m i l a r l y , other emi t te r 
parameters w i l l a lso be spec i f i ed as f a l l i n g w i t h i n 
a range of va lues. 

Our previous work [1 ] described how 
sensor models were modi f ied in the event of 
changing environmental cond i t i ons . In the approach 
descr ibed here, such environmental f ac to rs w i l l 
instead determine the t o t a l mass a sensor may 
a l l o c a t e to p ropos i t ions other than 3 . In e f f e c t , 
the uncer ta in ty U of a rece iver in the p r e v a i l i n g 
cond i t ions i s i t s minimal commitment to 6 ( I . e . , 
m(O) > U), leav ing only (1 - U) of the mass to be 
f r e e l y d i s t r i b u t e d . 

B. Modeling the Operation of a Sensor 

The modeling process begins w i t h the 
determinat ion of a frame of discernment. If the 
task Is to determine the t rue value of some 
v a r i a b l e , the frame of discernment is the set of 
a l l poss ib le values f o r tha t v a r i a b l e . For the 
problem at hand, each element of the frame of 
discernment cons is ts of an emi t te r type pai red w i t h 

a fea ture vector represent ing one poss ib le 
electromagnet ic s ignature t ha t such an emi t te r 
might e x h i b i t . Thus, is a subset of a l l of the 
combinations of em i t t e r types (ET), rad io 
frequencies (RF), and pulse wid ths (PW). 

The key requirement of the frame of discernment is 
tha t a l l the propos i t ions o f i n t e r e s t be in 
correspondence w i t h I t s subsets. In the cur rent 
context the f o l l o w i n g propos i t ions are some of 
those tha t might be of i n t e r e s t : 

Once a frame of discernment has been 
determined, it can be represented as a dependency 
graph [ 5 ] . In t h i s formal ism propos i t ions are 
represented by nodes, t h e i r i n t e r r e l a t i o n s h i p s by 
a r c s . These i n t e r r e l a t i o n s h i p s can be In te rp re ted 
e i t h e r as s e t - t h e o r e t i c not ions r e l a t i v e to the 
frame o f discernment ( e . g . , I n t e r s e c t i o n , un ion , 
i nc lus ion , and complementation), or as l o g i c a l 
connectives ( e . g . , con junc t i on , d i s j u n c t i o n , 
i m p l i c a t i o n , and nega t ion ) . The appropr ia te subset 
of p ropos i t ions and r e l a t i o n s h i p s , so represented, 
depends on the p re fe r red vocabulary of discourse 
among the KSs. Those p ropos i t ions to which the KSs 
tend to assign mass need to be i nc luded , along w i t h 
those re l a t i onsh ips tha t best descr ibe t h e i r 
interdependence. Once such a dependency graph has 
been es tab l i shed , it provides an integrated 
framework f o r both the combination and 
ex t r apo la t i on o f e v i d e n t i a l I n fo rma t i on . 

In the cur rent context there is a subgraph f o r 
each emi t te r f e a t u r e . At the lowest l e v e l of these 
subgraphs is a set of p ropos i t ions represent ing the 
smal lest bands into which tha t continuous fea ture 
has been p a r t i t i o n e d — t h i s p a r t i t i o n i n g being 
necessary w i t h i n a p ropos i t i ona l framework. These 
p r i m i t i v e bands form the basis of a h ierarchy in 
each subgraph, r e l a t i n g l a rge r bands to more 
p r i m i t i v e ones. The emi t t e r types are s i m i l a r l y 
represented, the h igher elements in the h ierarchy 
corresponding to d i s j unc t i ons of emi t te r types. 
A l l t h i s is t i e d together by one l a s t subgraph tha t 
re la tes the base elements of the h ie ra rch ies to 
elements of the frame of discernment, the frame of 
discernment cons i s t i ng of the poss ib le combinations 
of base elements. Figure 4 is a sketch of t h i s 
dependency graph, w i t h each node represent ing a 
p ropos i t i on equal to the d i s j u n c t i o n of those 
immediately below it, and the con junc t ion of those 
immediately above it. 

This dependency graph conta ins a l l the 
in fo rmat ion needed to determine the c o l l e c t i v e 
impact of several bodies of evidence on a l l the 
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propos i t ions o f i n t e r e s t . Given severa l d i s t i n c t 
bodies of e v i d e n t i a l In format ion ex t rac ted from the 
environment by severa l knowledge sources, repeated 
app l i ca t i ons of Dempster's ru l e fo l lowed by 
repeated app l i ca t ions of the inference ru les f o r 
support and p l a u s i b i l i t y p ropaga t ion—al l based on 
the in fo rmat ion embodied in the dependency graph— 
r e s u l t s in a support and p l a u s i b i l i t y est imate f o r 
every p ropos i t i on of I n te res t [ 5 ] . There are no 
r e s t r i c t i o n s regarding which propos i t ions serve as 
premises or conclus ions. In format ion about rad io 
frequency and pulse w id th can be used to determine 
the most l i k e l y types of emi t te rs—or in fo rmat ion 
about emi t ters and pulse w id th can be used to 
p r e d i c t the expected rad io frequency. In fe renc lng 
i s unconstra ined. 

C. S i m p l i f i c a t i o n of the Sensor Model 

In the preceding d iscuss ions , we showed how 
inferences could be drawn in a formal system that 
modeled a l l re levant elements o f 6 . I t i s 
f requen t l y inconvenient to model these elements 
i n d i v i d u a l l y . For example, too many elements may 
be needed to represent the r eso l u t i on of any 
p a r t i c u l a r sensor. An obvious s i m p l i f i c a t i o n is to 
compute new propos i t ions in 9 as they are needed, 
ro r example, when a rece iver repor ts a s igna l in a 
s p e c i f i c frequency band, p ropos i t ions can then be 
created which asser t tha t the s igna l o r i g i na ted 
from one element of a subset of possib le emi t te r 
t ypes . The exact hypotheses and t h e i r associated 
mass a l l o ca t i ons are determined by comparing 
rece iver measurements w i t h tabu la ted in fo rmat ion 
about the e m i t t e r s . 

1. I n i t i a l Mass Computations 

The f i r s t step is to convert sensory 
measurements i n t o a p r o b a b i l i t y mass d i s t r i b u t i o n 
over p ropos i t i ons . In essence, the parameter 
measurement range is o v e r l a i d on the curves 
represent ing d i s t r i b u t i o n s o f em i t t e r parameters, 
as shown in Figure 3. The area of the d i s t r i b u t i o n 
curve is computed f o r each emi t te r (p ropos i t ions 
are created only f o r those emi t te rs whose parameter 
ranges over lap the sensor 's r e p o r t ) . A set of 
"bas ic mass numbers" is then computed by 
normal is ing the resu l tan t areas to b r ing t h e i r 
t o t a l area to one. This process is exac t l y 
equ iva lent to computing the p r o b a b i l i t y of each 
e m i t t e r , condi t ioned upon the measured parameter's 
f a l l i n g in the spec i f i ed range (and assuming tha t 
only the tabulated emi t te r could rad ia te the 
received s i g n a l ) . 

The uncer ta in ty U of the rece iver is 
accounted f o r through reducing each basic mass 
number by m u l t i p l y i n g it by a f a c t o r equal to one 
minus U. This new set of mass numbers then 
represents the c o n t r i b u t i o n of the rece iver 
measurement to the support of the p r o p o s i t i o n . 

2. Example 

In t h i s example we assume that there are 
f i v e emi t te r types { E l , . . . , E5}, whose rf and pw 
c h a r a c t e r i s t i c s are shown g raph i ca l l y in Figure 3. 
The receiver has reported a frequency measurement 
of 7.6 to 7.7 GHz and a pulse w id th range of 
•68 to .7 Assuming an uncer ta in ty of .3 in the 
rf measurement and an uncer ta in ty of .2 f o r pw, the 
r e s u l t i n g mass funct ions are 
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w i t h an uncer ta in ty of .06 . This leads to the 
f o l l o w i n g re levant hypotheses: 

leads to two primary hypotheses, Elr 25 ,351 and 
E3r 33 43]. E3 is s l i g h t l y favored over E l . When 
ex te rna l evidence is brought to bear, the support 
f o r E1 becomes s i g n i f i c a n t l y greater than f o r a l l 
others (and, in f a c t , a l l others except E3 drop to 
very low l eve l s of suppor t ) . Any other KS tha t 
provides a mass assignment over t h i s set of 
p ropos i t ions may a lso be combined. 

This s i m p l i f i c a t i o n of the formal method 
provides the a b i l i t y to i n teg ra te in fo rmat ion 
qu i ck l y from a v a r i e t y of sources, even in those 
areas where the necessary p ropos i t ions have not 
already been ex t rac ted from 6. The technique does 
not yet a l low the propagation of evidence to 
a r b i t r a r i l y se lected propos i t ions from the network. 
For example, i t is not possib le to take the 
s t r uc tu re def ined f o r t h i s problem and use I t to 
determine what rad io frequency values should be 
expected on the basis of pulse w id th data—a 
process eas i l y ca r r i ed out by the f u l l 
rep resen ta t ion . This is an area of cur rent 
research. A re la ted computat ional technique, 
r e s t r i c t e d to evidence tha t e i t h e r confirms or 
denies a s ing le p r o p o s i t i o n , is a lso being 
inves t iga ted [ 6 ] . 

IV SUMMARY 

We have b r i e f l y described an in ference 
technique tha t appears to s a t i s f y many of the 
requirements f o r reasoning in perceptual domains. 
In p a r t i c u l a r , the method provides the c a p a b i l i t y 
f o r (Bayeslan) p r o b a b i l i s t i c reasoning when the 
appropr ia te under ly ing models are ava i l ab le ( e . g . , 
at the lowest l eve ls of the system), ( e v i d e n t i a l ) 
sub jec t i ve reasoning when incomplete descr ip t ions 
must be used ( e . g . , at the "midd le" l eve l s of the 
system), and (Boolean) l o g i c a l reasoning when the 
t r u t h values of p ropos i t ions are t rue and f a l s e . 
This technique al lows us to augment a s t a t i c , 
Incomplete model w i t h current sensory i n fo rma t i on . 

The approach provides a formal technique f o r 
updat ing the l i k e l i h o o d s of p ropos i t ions in a 
cons is tent manner. In e f f e c t , by simultaneously 
performing computations over a c o l l e c t i o n of 
p ropos i t i ons , the method maintains g loba l 
consistency wi thout the problems f requen t l y 
p laguing techniques that perform i t e r a t i v e updat ing 
by means of l o c a l r u l e s . Most impor tan t l y , besides 
o f f e r i n g an inference technique tha t can be used 

w i t h i n a KS (as i l l u s t r a t e d ) , the method provides a 
" language" f o r KSa to communicate w i t h one another, 
as w e l l as f u r n i s h i n g the means f o r l i n k i n g 
d ispara te sources of i n f o rma t i on . 

In our previous work on perceptual - reasoning 
systems, we evolved a number of e f f e c t i v e generic 
( e . g . , t e r r a i n , weather, e t c . ) and domain-speci f ic 
( e . g . , sensor) KSs. Our cur rent research, focusing 
on the e v i d e n t i a l p r o p o s l t l o n a l ca lcu lus as the 
i n t e g r a t i n g medium, alms at developing a general 
framework f o r l i n k i n g these KSs together smoothly 
and f l e x i b l y . 

REFERENCES 

325 


