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ABSTRACT

This paper introduces a formal method for
integrating knowledge derived from a variety of
sources for use in "perceptual reasoning."* The
formalism is based on the "evidential proposlitional
calculus," a derivative of Shafer's mathematical
theory of evidence [4]. It is more general than
either a Boolean or Bayeslan approach, providing
for Boolean and Bayeslan inferencing when the
appropriate information is available. In this
formalism, the likelihood of a proposition A is
represented as a subinterval, [s(A),p(A)], of the
unit interval, [0,1]. The evidential support for
proposition A is represented by s(A), while p(A)
represents its degree of plausibility; p(A) can
also be interpreted as the degree to which one
fails to doubt A, p(A) being equal to one minus the
evidential support for "A. This paper describes
how evidential information, furnished by a
knowledge source in the form of a probability
"mass" distribution, can be converted to this
interval representation; how, through a set of
inference rules for computing intervals of
dependent propositions, this Information can be
extrapolated from those propositions it directly
bears upon, to those it indirectly bears upon; and
how multiple bodies of evidential Information can
be pooled* A sample application of this approach,
modeling the operation of a collection of sensors
(a particular type of knowledge source),
illustrates these techniques.

| INTRODUCTION AND OVERVIEW

We are pursuing a program of research aimed at
developing a computer-based capability for
"perceptual reasoning" [2] that will make it
possible to Interpret important aspects of a
situation from information obtained by a collection
of disparate sensors. Situational assessment
Implies the need to integrate sensory information
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supported by the Defense Advanced Research Projects
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the Air Force Avionics Laboratory under Contract
No. F33615-80-C-1110) and the Office of Naval
Research under Contract No. N00014-81-C-0115.
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with a body of relevant "expertise," or prior
knowledge. This integration poses a number of
difficult technical problems that must be examined.

Among the problems focused upon in our work
are the following:

*

How to model sensors and other knowledge
sources (KS), so as to know which
situations they can provide Information
about and how to interpret their responses.

How to effectively combine (sometimes
contradictory) information from multiple
knowledge sources to compensate for their
Individual deficiencies.

How to automatically devise a data-
acqulsltlon/sensor-utllizatlon strategy
maximise overall system effectiveness.

to

In this paper we shall concentrate on the
approach to sensor modeling and knowledge
integration that is currently under investigation.
These form the core of the overall system.

A. Previous Work

Earlier research [1, 2, 3] led to a number of
important conclusions regarding the integration of
perceptual Information. First, because of the
variety of knowledge types required and the
particular uses of each, it became apparent that a
proliferation of specialised representations was
inevitable. This is a departure from standard
approaches that attempt to develop a representation
of sufficient scope to encompass all of the
knowledge needed by a system. Use of nonmonolithlc
representations allows KSs to perform efficient
operations on widely diverse, locally appropriate
data formats. However, the problem then becomes
one of somehow connecting these KSs in a flexible,
effective manner.

We formulated several requirements of a
reasoning paradigm for the combination and
extrapolation of evidential information from
disparate KSs. Whereas earlier work has focused
upon a Bayeslan-based probabilistic scheme, we feel
that this is too restrictive. A likelihood
represented by a point probability value is usually
an overstatement of what is actually known,
distorting the available precision.



In particular, there is no adequate, non-ad hoc
representation of ignorance within a Bayeslan
framework.

Another problem with a Bayeslan approach to
the modeling of belief is the difficulty of
ensuring and maintaining consistency in a
collection of interrelated propositions. This
difficulty also stems from the need to assign point
probability values, even when the underlying models
from which these values are derived are incapable
of supplying such precise data.

There are many occasions when the inference
technique of choice is probabilistic reasoning
(e.g., particularly when reasoning is done with
data close to the signal level), and other
occasions when a (Boolean) logical formalism is
preferred (e.g., when trying to combine "higher-
level" knowledge). To avoid an ad hoc approach to
"global" knowledge integration, the inference
paradigm should flow smoothly from a probabilistic
technique to a logical one, as the propositions in
question become more nearly true or false. In
addition, whenever the underlying model is complete
and consistent enough for traditional methods to be
effective, the technique should reduce to a
Bayeslan paradigm.

B. The Shafer Representation

The representation we have adopted to satisfy
the preceding requirements for the integration of
global knowledge is based on the work of Shafer
[4]. It expresses the belief in a proposition A by
a sublnterval (s(A),p(A)] of the unit interval,
[0,1]. The lower value, s(A), represents the
"support" for that proposition and sets a minimum
value for its likelihood. The upper value, p(A),
denotes the "plausibility" of that proposition and
establishes a maximum likelihood. Support may be
Interpreted as the total positive effect a body of
evidence has on a proposition, while plausibility
represents the total extent to which a body of
evidence falls to refute a proposition. The degree
of uncertainty about the actual probability value
for a proposition corresponds to the width of its
interval. As will be shown, this representation
with the appropriate inference rules satisfies the
requirements established above.

In the remainder of this paper, we shall
demonstrate Dempster's rule of combination [A] for
pooling evidential information from independent
knowledge sources, present an Inference mechanism
for updating proposition intervals based on other
dependent proposition intervals, and demonstrate
their use in sensor modeling and integration.

For example, if no Information is available
concerning two Initially exclusive and exhaustive
possibilities, in a Bayeslan framework they are
usually assigned a probability of .5. This Is
quite different from specifying that nothing is
known regarding such propositions.
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Il KNOMEDGE REPRESENTATION AND INFERENCE

in what we call the "evidential propositional
calculus," we represent a proposition using the
following notation:

“Is(A), p(A)],

where A is the proposition, s(A) the support for
the proposition, and p(A) Its plausibility. p(A)
is equivalent to i-s("A), the degree to which one
falls to doubt A. The Interval [s(A),p(A)l Is
called the "evidential interval." The uncertainty
of A, u(A), corresponds to p(A)-s(A). If u(A) is
zero for all propositions, the system is Bayeslan.

The following examples illuminate some
important points;

* A => no knowledge at all about A.
to,1]

* A[o’ol w> A is false.
* Alllll =>» A la true.
b A[,25 1] *> avidence provides parcial
' support for A.
A =) evidence provides partial
(0, .85] support for ~A.
®

A => probability of A is betwesn
l.zs’.BSI «25 and .35; 1.0.| the
evidence simultaneously
provides support for
both A and “A.

A Dempster's Rule of Combination

Dempster's rule is a method of integrating
distinct bodies of evidence. This is most easily
introduced through the familiar formalism whereby
propositions are represented as subsets of a given
set, here referred to as the "frame of discernment"”
(denoted 6). When a proposition corresponds to a
subset of the frame of discernment, it is said to
be "discerned." The primary advantage of this
formalism is that it translates the logical notions
of conjunction, disjunction, implication, and

negation into the more graphic, set-theoretic
notions of intersection, union, inclusion, and
complementation* Dempster's rule combines

evidential information expressed relative to those

propositions discerned by O.

1. Single Belief Functions

We assume that a knowledge source, KSy,
distributes a unit of belief across a set of
propositions for which it has direct evidence,
proportion to the weight of that evidence as it
bears on each. This is represented by a function:

in

A (Al A C 8} =-> 10,1],
a,(4) = 0,

2, s = 1
MEo

Those propositions are referred to as the KS's
"focal elements*"



m1(Ai) represents the portion of belief that KS;
has committed exactly to proposition A; termed its
"basic probability mass." m; can be depicted as a
partitioned unit line segment, the length of each
subsegment corresponding to the mass attributed to
one of Its focal elements (Figure 1). Any mass
assigned to O represents the residual "uncertainty"
of the KS directly. That is, m4(O) is the mass
that could not be ascribed to any smaller subset of
6 on the basis of the evidence at hand, but must
Instead be assumed to be distributed in some
(unknown) manner among the propositions discerned
by 9. A similar Interpretation is given to mass
assigned any (nonunlt) set.

mylAyl mylAz) e mylAdd o+

.
1 . . J
! ¥ t ==

1

Figure 1 Prubability Mase Asmignment for KS§;

Once mass has been assigned to a sec of
propositions, the evidential interval can be
determined directly. Support for a proposition A
is the total mass ascribed to A and to its subsets;
the plausibility of A is one minus the sum of the
mass assigned to "A and to subsets of "A; the
uncertainty of A is equal to the mass remaining,
i.e., that attributed to supersets of A, including
©.

#1(A) -E"“‘)'
AfCaA
PL{A) = 1 - s1("A).
up{A) = pp(A) = 81(A)s
For example,
1f A = {a}, Av 3B = {ab},
~A = {b,c}, 4= {a,b,c},
and o)(<A,TAA v B,8)) ® G4,.2,.3,.17;
then A[.&’ 8] Ay 51-7. A

A2, .61 o, 1y

2. Composition of Mass Functions

If the belief function of a second KS,
KS,, is also provided, the information supplied by
these KSs can be pooled by computing the
"orthogonal sum;" this computation is illustrated
by the unit square in Figure 2.

To combine the effects of KSy, and KS,,
we consider the unit square as representing the
combined probability mass of both KSs; KS;
partitions the square into vertical strips
corresponding to its focal elements, while KS;
partitions it into horizontal strips that
correspond to its focal elements. For example,

Figure 3 shows a vertical strip of measure m)(Ay)
that ia axactly committed to by K5;, and &
horizontal strip of size wy(B,) committed pracissly
to By by KS;. The intersectidm of theee strips

c ts exactly Il(ki)lz(lj) to tha combination of

Ai M !j .
/ﬂ\| 21‘|n.i] - mﬂAi]m,IB,I

. /

myiby|

MyiAy) mylAglese myll) o« o o
L

Figure 2 Composition of Mass frow KS; and KS,

Accordingly, we can compute the aras
commitment of each rectangle comprising the square.
A given subset of 8, C, may have more than one
rectangle exactly committed to 1t} the total mass
allocated te C im

E .l(Ai)nz(Bj)'

This scheme 1s likely to comait a portion
of mass to the ampty set 4. Every rectangle
comitted to A;MN By, whare ﬂlj = 4, results in
such a commitment.” The "remedy""is to discard all
such rectangles, proportionally increasing (i.e.,
normalizing) the si{ze of the remaining rectangles
by the following aultiplicative factor:

Ne=(1 -k,
where

EED I IR INCIE
AynBy = 4

thereby restoring the total probability mass to
one.

There are several points of Interest with
respect to Dempster's rule of combination. The
operation is commutative; therefore, the order of
combination is Immaterial. The operation is also
associative, allowing the palrwise compositions of
a sequence of KSs. When two Bayesian mass
functions are combined, one associating its full
unit of mass with a single proposition, the
resulting support and plausibility values are the
expected Bayeslan conditionals. Yet when only less
precise information is available, It too can be
exploited.

The degree of conflict between two KSs
can be measured intuitively by the size of the
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factor k. The greater the value of k, the greater
the degree of conflict between the two KSs. When k
la one, the KSa are Irreconcilably different and
the orthogonal sum doea not exist.

B. Inference Rules

In addition to a technique for pooling
distinct bodies of evidence, rules are needed that
allow evidential information to be tranalated from
thoae propositions it bears upon directly to those
it beara upon indirectly. These rulea are baaed on
the following two principles of evidential support:

*

The proposition corresponding to the frame
of discernment alwaya receives full
support.

Any support committed to a proposition is
thereby committed to any other proposition
it implies.

From the first principle we know that s(6) -
p(8) - 1. The second principle dictates that any
support committed to a subset of the frame of
discernment is thereby committed to Its supersets.
This follows because one proposition implies
another if it la a subset of that proposition in
the frame of discernment. Of the total aupport
committed to a given proposition A, some may be
committed to one or more proper aubaeta of A, while
the reat is committed exactly to A —and to no
smaller subset, i.e., m(A). If it la assumed that
a knowledge source expresses itself in terms of
support and plausibility estimates for a selected
set of propositions from the frame of discernment,
a aet of inference rulea allows these estimates to
be tranalated from proposition to proposition,
thereby reducing uncertainty. A sampling of theae
rulea follows. The statements above the line in
each rule allow the statement below the line to be
inferred.

81,11,
ACS

e e -

Afo,1].

:{-IcA).p1(a>1
[s2(A),p2(A)]

Afa(a),p(A)], o(A) = MAX[ s1(A), w2(A) ],

p(A) = MIN[ pl(A), p2(A) ].
Ala(a),pla)]

~Afa(~A),pC7A)], #("A) = 1 = p(A),
P(TA) = ] = a(A).

Als(A),p(A))
Bla(®),p(M)]

A Y Bg(avB),plavd) ],
s(AvB) = MAX] e(A), e(B) ],
p(AvE) = MIN[ 1, p(A) + p{B) ).
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A v Blo(avB),p{AvE)]

Alg(A), p(A)]

Bla(n),p(B)], #(B) = MAX[ O, o{Av8) = p{A) ],
p(B) = p(AvE).

A[l(ﬂ)lp(k”

Bla(B),p(B)]

A& Big(auB),p(AsB)],
a(ALB) = MAX[ O, s(A) + 8(B) = 1 ],
p(AGB) = MIN[ p(A)}, P(B) ].

A& BlocatB),p(AsB) ]
AlatA),p(A)]

Blo(B),p(B)), 8(B) = s(AB),

p(B) = MIN| 1, 1 + p(A&B) - e(A) ].

As can be easily shown, when propositions are
known to be true or false (that is, when their
corresponding belief Intervals become either [0,0]
or [1,1]), these rules reduce to the corresponding
rules of the propositional calculus. Thus, when
appropriate knowledge exists, this method will
enable eaay transition from a probabilistic
inference computation to the standard propositional
calculus.

11 EXAMPLE: MODELING A KNOWMEDGE SOURCE

As our intention has been to treat sensors as
specialized KSs, in this section we shell describe
an approach to modeling such a KS. We shall begin
by discussing the usual parameters measured by a
(hypothetical) sensor, illustrating how, for this
simple example, these measurements are converted to
hypotheses by the inference mechanism.

A. Sensor_Measurements
We assume thet collections of electromagnetic
signal "emitters" deployed in various

configurations comprise the situation of interest.
Measurements of characteristics of the signals
emitted by these devices will be used to formulate
hypotheses about their identities. In the complete
system, these hypotheses will interact with those
derived from other KSs to create a more
comprehensive picture of the situation. Let us
first concern ourselves with a single KS and then
show how it may be composed with other KSs.

1. Emitter Characteristics

In this example, en emitter will rediate
e pulsed radar signal whose pertinent
characteristics will include the carrier frequency
(rf) and the pulse width (pw), which are measured
directly by the receiver. For the example we
assume that the emitters of interest ere of types
El, E2, E3, B4, or B5. The goal of the program is
to identify a signal as having originated from one

of those types.



The Information about the parameter
values likely to be exhibited by an emitter is
presented in the form of parameter distribution
graphs—for example, as shown in Figure 3. These
curves indicate the probability that any given
emitter (of the type indicated) will have a
specific parameter value; the total area under each

curve is one.

A typical approach to identifying an
emitter is to look up the measured parameters in a
table. In addition to difficulties traceable to

the static nature of the table (e.g., emitter
characteristics are not expected to remain stable
and constant in actual operation), the technique

gives little Information regarding the relative
likelihoods of ambiguous identifications.
" A
e _A.——
& A
& __A_
. A
1

10 5 10

rf{GHR) pwiuSEC)

Figure 3 Examples of Typical Emittrer
Parameter Distributions

2. Sensor Characteristics

A sensor (receiver) will specify a range
of possible values for the measured emitter
parameter, as determined by the resolution of the
sensor's measurements. For example, the receiver
may specify an emitter's frequency value as lying
within a band of frequencies, say from
5.5 to 5.6 GHz. Similarly, other emitter
parameters will also be specified as falling within
a range of values.

Our previous work [1] described how
sensor models were modified in the event of
changing environmental conditions. In the approach
described here, such environmental factors will
instead determine the total mass a sensor may
allocate to propositions other than 3. In effect,
the uncertainty U of a receiver in the prevailing
conditions is its minimal commitment to 6 (l.e.,
m(0) > U), leaving only (1 - U) of the mass to be
freely distributed.

B. Modeling the Operation of a Sensor

The modeling process begins with the
determination of a frame of discernment. If the
task Is to determine the true value of some
variable, the frame of discernment is the set of
all possible values for that variable. For the
problem at hand, each element of the frame of
discernment consists of an emitter type paired with
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a feature vector representing one possible
electromagnetic signature that such an emitter
might exhibit. Thus, 8is a subset of all of the
combinations of emitter types (ET), radio
frequencies (RF), and pulse widths (PW).

G§CET x RF x M.,

The key requirement of the frame of discernment is
that all the propositions of interest be in
correspondence with Its subsets. In the current
context the following propositions are some of
those that might be of interest:

{The esitter L{s typs El)
= {q] q € 8 and at(g) = El};

(The radio frequency is bstwean 5.5 and 5.6 GHz)
= {q1 q € 0 and 5.5 < rf{q) < 5.6};

{The emittar is typs El with pulee widcth
betwesn .58 and .7 u»)
= {q] q € @ and et{q) = El
and .68 < pw(q) £ 7}

Once a frame of discernment has been
determined, it can be represented as a dependency
graph [5]. In this formalism propositions are
represented by nodes, their interrelationships by
arcs. These interrelationships can be Interpreted
either as set-theoretic notions relative to the
frame of discernment (e.g., Intersection, union,

inclusion, and complementation), or as logical
connectives (e.g., conjunction, disjunction,
implication, and negation). The appropriate subset

of propositions and relationships, so represented,
depends on the preferred vocabulary of discourse
among the KSs. Those propositions to which the KSs
tend to assign mass need to be included, along with
those relationships that best describe their
interdependence. Once such a dependency graph has
been established, it provides an integrated
framework for both the combination and
extrapolation of evidential Information.

In the current context there is a subgraph for
each emitter feature. At the lowest level of these
subgraphs is a set of propositions representing the
smallest bands into which that continuous feature
has been partitioned—this partitioning being
necessary within a propositional framework. These
primitive bands form the basis of a hierarchy in
each subgraph, relating larger bands to more
primitive ones. The emitter types are similarly
represented, the higher elements in the hierarchy
corresponding to disjunctions of emitter types.

All this is tied together by one last subgraph that
relates the base elements of the hierarchies to
elements of the frame of discernment, the frame of
discernment consisting of the possible combinations
of base elements. Figure 4 is a sketch of this
dependency graph, with each node representing a
proposition equal to the disjunction of those
immediately below it, and the conjunction of those
immediately above it.

This dependency graph contains all the
information needed to determine the collective
impact of several bodies of evidence on all the



Figure 4 Dependency Graph for Sensor Model

propositions of interest. Given several distinct
bodies of evidential Information extracted from the

environment by several knowledge sources, repeated
applications of Dempster's rule followed by
repeated applications of the inference rules for

support and plausibility propagation—all based on
the information embodied in the dependency graph—
results in a support and plausibility estimate for
every proposition of Interest [5]. There are no
restrictions regarding which propositions serve as
premises or conclusions. Information about radio
frequency and pulse width can be used to determine
the most likely types of emitters—or information
about emitters and pulse width can be used to
predict the expected radio frequency. Inferencing
is unconstrained.

C. Simplification of the Sensor Model

In the preceding discussions, we showed how
inferences could be drawn in a formal system that
modeled all relevant elements of 6. It is
frequently inconvenient to model these elements
individually. For example, too many elements may
be needed to represent the resolution of any
particular sensor. An obvious simplification is to
compute new propositions in 9 as they are needed,
ror example, when a receiver reports a signal in a
specific frequency band, propositions can then be
created which assert that the signal originated
from one element of a subset of possible emitter
types. The exact hypotheses and their associated
mass allocations are determined by comparing
receiver measurements with tabulated information
about the emitters.

1. Initial Mass Computations

The first step is to convert sensory
measurements into a probability mass distribution
over propositions. In essence, the parameter
measurement range is overlaid on the curves
representing distributions of emitter parameters,
as shown in Figure 3. The area of the distribution
curve is computed for each emitter (propositions
are created only for those emitters whose parameter
ranges overlap the sensor's report). A set of
"basic mass numbers" is then computed by
normalising the resultant areas to bring their
total area to one. This process is exactly
equivalent to computing the probability of each
emitter, conditioned upon the measured parameter's
falling in the specified range (and assuming that
only the tabulated emitter could radiate the

received signal).
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The uncertainty U of the receiver is
accounted for through reducing each basic mass
number by multiplying it by a factor equal to one
minus U. This new set of mass numbers then
represents the contribution of the receiver
measurement to the support of the proposition.

2. Example

In this example we assume that there are
five emitter types {EI, E5}, whose rf and pw
characteristics are shown graphically in Figure 3.
The receiver has reported a frequency measurement
of 7.6 to 7.7 GHz and a pulse width range of
*68 to .7 ws. Assuming an uncertainty of .3 in the
rf measurement and an uncertainty of .2 for pw, the
resulting mass functions are

. (<E1,E2,E3,B4,E3>) = <.13,.22,.35,0,0>
and

0, (E1,E2,E3,B4,E5>) = <.26,.085,.17,.034, .26

Combining these with Dempster’s rule
gives the coaposite mass function,

(<®1,E2,E3,B4,255)
Setipw <.25,.16,.33,.018, .14,

with a resulting uncertainty of Q.1l. This
computation f{e fllustrated in Figura 5,in which
all rectangles sttributed to ¢ are shaded and the
remaining rectangles labaled with the proposition
receliving that asss. Thesa values convert directly
to intetvals on the propositions, as shown:

it qucz iE3 In
£5
m{E5)
g MES T3 -
fulT £ £3
miEz) | JE2 L2
ET[ I
miE)
miE1ImIE2) mIED) mid]
M,y

Figura 5 Composition of the Mass Assignmants
by Sensor Models

.36]
E2( 16, .27)
E3(,33, .43)
E4{ 018, .13)
E3(,14, .25]

This information may be readily combiped
with information provided by other KSs. For
example, a K5 that indicated a high likelihood of
encountering an El aight produca the following mass
function:



(<E1,E2,B3,E4,E5>)
Mprtor S 5 000.0,05,

which, when integratad with the reaceivar
maasurements, would result in a mass function

a (<E1,E2,E3,E4,E5>)
composite_¢.39,.089,.18,.01,.076>,

with an uncertainty of .06. This leads to the

following relevant hypotheses:

El{ s9,.65]) and B3[ 19 ,24]
Basad on sensor data alona, the method

leads to two primary hypotheses, Elr 25 ,351 and
E3r 33 43]. E3 is slightly favored over EI. When
external evidence is brought to bear, the support
for E1 becomes significantly greater than for all
others (and, in fact, all others except E3 drop to
very low levels of support). Any other KS that
provides a mass assignment over this set of
propositions may also be combined.

This simplification of the formal method
provides the ability to integrate information
quickly from a variety of sources, even in those
areas where the necessary propositions have not
already been extracted from 6. The technique does
not yet allow the propagation of evidence to
arbitrarily selected propositions from the network.
For example, it is not possible to take the
structure defined for this problem and use It to
determine what radio frequency values should be
expected on the basis of pulse width data—a
process easily carried out by the full
representation. This is an area of current
research. A related computational technique,
restricted to evidence that either confirms or
denies a single proposition, is also being
investigated [6].

v SUMVARY

We have briefly described an inference
technique that appears to satisfy many of the
requirements for reasoning in perceptual domains.
In particular, the method provides the capability
for (Bayeslan) probabilistic reasoning when the
appropriate underlying models are available (e.g.,
at the lowest levels of the system), (evidential)
subjective reasoning when incomplete descriptions
must be used (e.g., at the "middle" levels of the
system), and (Boolean) logical reasoning when the
truth values of propositions are true and false.
This technique allows us to augment a static,
Incomplete model with current sensory information.

The approach provides a formal technique for
updating the likelihoods of propositions in a
consistent manner. In effect, by simultaneously
performing computations over a collection of
propositions, the method maintains global
consistency without the problems frequently
plaguing techniques that perform iterative updating
by means of local rules. Most importantly, besides
offering an inference technique that can be used
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within a KS (as illustrated), the method provides a
"language" for KSa to communicate with one another,
as well as furnishing the means for linking
disparate sources of information.

In our previous work on perceptual-reasoning
systems, we evolved a number of effective generic
(e.g., terrain, weather, etc.) and domain-specific
(e.g., sensor) KSs. Our current research, focusing
on the evidential proposltional calculus as the
integrating medium, alms at developing a general
framework for linking these KSs together smoothly
and flexibly.
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