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Abstract

This paper reports on the continuing design
of and experimentation with Jason, the Berkeley
Robot. Progress has been nade in various aspects
of the hardware (including the chassis, conmmunica-
tions controller, and onboard m croprocessor) and

software (including problemsolving prograns and
wor | d model s) . A particul ar experinment, analogous
to the classical "Monkey and Bananas" Problem is

feature of the reformul ati on
the use of Decision Analysis in
Based on the accinulated

descri bed. A major
of this problemis
coping wJth uncertainty.

expected costs of executing the steps of various
hypot hetical plans, Jason can evaluate the rel a-
tive merits of direct action versus prior
information-gathering using potentially unreli-
abl e sensors.
Introduction

As reported at the last |JCAI Conf erence, !

the objective of our current research at the Uni-

versity of California at Berkeley is the design
and i mplementation of a relatively inexpensive,
general - purpose, conputer-control | ed, nobile
robot. The Berkeley robot, dubbed Jason, was
tially designed during the Spring of 1973 and
tested off-line the following Summer. Hard-wire,
blind-mde conmputer control was successfully ac-
complishcd during January 1974. Unreliable bread-
board wiring as well as greater than expected de-

ini-

mands for on-board power have led to a substant ial
redesign effort; testing of a considerably im
proved version of Jason is now underway.

Qur ultimate goal, as stated earlier, remmins

the investigation of the class of problens that a

robot both encounters and creates while performng
elementary tasks In a real-world envi ronment in-
el udi ng active human beings. The results of this

research wll hopefully enable us to construct

better and safer robots at a nodest price that are
still capable of performng a variety of useful
tasks such as factory or ware-house work or can

function as a teaching aid for young children in

the classroom

This paper is divided into five sections.
The first briefly reviews sone of the recent i m
provements to Jason hardware and software. The
second section suggests sone of the ways that ro-
botics research differs fromconventional Al
problem solving research. The third section pre-
sents a decision analysis formulation of the cl as-
sical "nonkey and bananas"” problem The fourth

section provides the results of the decision anal-
ysis. Finally, the last section summari zes and
proposes sone i nmprovenents to Jason hardware and
software for the future.
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Jason Har dwar e/ Soft ware | nprovenents

Figures | and 2a-f provide an overview of the
current state of Jason.
A Har dwar e

First we discuss inprovements to the key
hardware subsystens: the chassi s, the sensors, and

the communi cations controll er.

1. Robot Chassi s--The Jason chassi s con-
sists of a half-inch thick alum num base plate
with an area of about tw square feet with tw ad-
ditional alum num shelves nounted above for elec-
tronic equipment- The three-ball configuration
originally designed to support the front of Jason,
al though conceptually good, did not perform well
on rough surfaces 1like a parking | ot, and conse-
guently was replaced by a heavy-duty, 3-inch diam
eter, swivel-castor wheel. To provide additional
on-board power, the conventional, 83-anp-hour,
|l ead storage, auto battery was replaced by a 250-
anp- hour, 150-pound, train battery. Due t o exten-
sive two-handed coordination problems, the origi-

nal plan for two sinple hands has been reduced to
one, and a prosthetic arm with jaw gripper has now
been installed. A sinmple two-posi tion-sensor push

bar has al so been installed:
cates slight pressure contact while the other in-
di cates too much pressure, i.e., Jason is trying
to push a nonpushable object. The motor-control
unit was also rebuilt to make i t nore rugged.

one setting indi-

2. Sensors--An A-to-D converter to extract
texture information as well as range data from the
anal og output of the ultrasonic torch has been dc-
si gned. An LED proxi mity sensor has been nounted
on the arm and the proximty-sensor interface was
conpl et ed.

3. Conmuni cations Controller--The prelimi-
nary Jason 8-bit character asynchronous communica-
tions controller was successfully bench tested, re
fabricated on circuit cards, and nounted in a new
card rack and chassis by one of the authors (Robb)
Previous problems of vibration should now be mini-
m zed, and circuit debuggi ng should be greatly fa-
cilitated. Because the controller has been de-
signed to be teletype-compatible, Jason could in
principle be interfaced to any conmputer wi thout
speci al -purpose hardware being installed at the
computer side. For exanple, Jason has already
been connected to an HP-3000, a (DG 6400, and a
PDP- 10 conmputer system Furthernmore, we have re-
cently denmonstrated Jason over the ARPA Net. Fur -
ther details on the controller can be found in Ref
2. Qur F&C radio-license was renewed, and two-way
radio telemetry has been successfully bench tested,
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B. Sof t war e

On the software side, the check out of real -
timeinteractiveroutines was handicapped by the
removal of the HP-3000 computer from the Lawrence
Hal | of Science. Thus, al |l interactive work with
Jason during the last year was simulated on the
CDC- 6400 available on the Berkeley campus. W
have recently transferred Jason software to anin-
teractive DEC PDP-10 computer system and have suc-
cessfully tested Jason over the ARPA Net.

In the mean-time the Jason simulator, which
has produced output tapes capable of actually
driving Jason in blind mode, has grown extensively
to include a much broader collection of Intermedi-
ate Level Operators (ILO"s) such as Mve, Turn,
Face, Goto, Push, Pushto, Gotodoor, Gothrudoor,
etc., capable of execution in an arbitrary collec-
tion of rooms connected by doorways and corridors,
navigating optimally through an arbitrarily com
plex collection of boxes in any room  This work
is documented in the Jason Reference Manual,® and
although it represents the work of many individu-
als, two of the authors (Sinclair and Sobek) are
largely responsible. Output fromthe simulator
will be seen in Section IV,

Real -World Vs. Toy Problems

Early research inartificial intelligence
tended to focus on a few well-known puzzles or
"toy" problems, such as the Monkey and Bananas,
Missionaries and Cannibals, or Tower of Hanoi
problems (see Ref. 4 for these and other examples).
Al though toy problems demonstrate theintellectual
competence of computers along one narrow dimension,
research in robotics has broadened considerably
the scope of the problem-solving enterprise. Our
experience with the Jason project permits us to
identify at least four general criteria which dis-
tinguishreal-worldrobot problems fromtoy prob-
lems: problem-solving environment, problem formu-
lation, data requirements, and solution require-
ments.

A. Prohl em- Solving Environment

A rough spectrumof problem-solving environ-

In the language of Table 1, almost al | work
in Al was conducted inasterileenvironment (EI).
Subsequent early robotics research began with
surgically-clean environments (E2) and was se-
verely criticized for giving the appearance of E3
to uneducated observers, when in reality i t was
not very much of an advance over EI. As more ad-
vanced scene analysis and perceptual techniques
became available, emphasis shifted to E3 and E4.
With the appearance of more sophisticated hard-
ware sensors initial forays are being made into
benevolent environments (E5). All work to date in
Natural or Hostile Environments (E6,7) has been
done with teleoperators, where a human is an es-
sential part of the loop.

B. Probl em-Formul ation

Because of the real-time execution and
trainingaspect of robotics work, the problemfor -
mul ation must be accomplished in human terms
rather than mathematically. Thus, voice-input,
restricted natural-language-problem statements
are desired. Other techniques to facilitate mn-
machineinteractionsuchas"joy-sticks,"cursor
tracking balls, or light pens are also needed.

C. Data Requirements

Information to solve the problemmy either
be inadequate or embedded in a large quantity of
seductive but mostly superfluous data, or some
combination of these. Insufficient information

mi ght occur for a variety of reasons: (1) it may
not be knowable inprinciple, (ii) it mynot be
known whether it i s knowableinprinciple, (1 11)

the necessary information is knowable, but the
cost of acquiring it my be prohibitive. (As a
special case, the cost my be reasonable, but ac-
quisition cannot be accomplished within suffi-
cient time to be useful), and (iv) it is not
known whether the cost of information-gathering
will prove to be prohibitive. (I'n this case de-
cision analysis my be useful.)

Once obtained, data may still possess uncer-
tainty or lack credibility for various reasons:
(1) the data my be incorrect due to statistical

ments in terms of incr o ol exity is ind unreliabilityinthesensorypath, (ii) thesource
ents erms 0 hereasing compt e yous ) i's known to be prejudiced, (i i i ) thesourceis
cated in the following table:

Environment Degcription

El. Sterile

Mathematically precise, no interaction with the real world.

E2. Surgically Clean

Real-world inputs, but highly contrived, such as painting objects with
saturated colors so that the robot can identify them more easily.

E3. Passive

Typical interior environment (such as an office) without people.
wind or shadows due to changing illumination.

E4. Active
animals,

Alao, no

Typical exterior environment (trees, sky, etc.), but without people or

ES. Benevolent

Active environment with cooperative humans exhibiting ruled behavior (such as
in a factory or parking leot).

E6. | Natural

Benevolent environment including animals as well as seasonal weather changes,.

£7. Hostile No constraints:

potential adversaries,

mines, deep under water, outer space, etc., including

TABLE 1
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known to be antagonistic and my deliberately pro-
vide false leads. Finally, (iv) the data my be
inconclusive because of inherent ambiguities within
the model upon which it is based and may not yield
adefinitive interpretation. Medical or meteoro-
logical data fall in this category.

D. Solution Requirements

As distinguished from conventional Al problem
solving, a solution is not a solution for a robot
until It has been successfully implemented as
action in the real world. There are many opportu-
nities for failure along the path to a solution in
this sense: planning failures, execution failures,
and decision failures (a failure of communication
between the planner and the executor).

1. Planner Failures--Within the planner
various failure modes my occur: Either a plan is
found or it isn't. If noplan is found, it could
either be due to the fact that none exists (i.e.,
the task is truly impossible) or the system lacked

the intelligence to find one. If a plan is found,
it might still fail for a variety of reasons: (i)
it never could have worked (i.e., it fails in prin-
ciple); (ii) it sometimes works (i.e., it fails in
practice). A plan is said to be incomplete® (or

soft) if it deliberately avoids dealing with all
logically possible contingencies- Although such
fragmentary plans are generally undesirable, they

are sometimes preferable to no plan at al |l . Yet
even a complete (or robust) plan will occasionally
fail at some point in its capacity to sustain vari-

ation in environmental boundary conditions. | f one
were to plot the performance of a robot plan as a
function of environmental complexity (El to E7 of
Table 1) then one could characterize the failure
mode as precipitous or capable of graceful degrada-
tion in proportion as whether the shape of perfor-
mance fell off sharply or smoothly with complexity;
(i1 1) even though questions of optimality are
rarely stated explicitly in the problemformulation
because it is normally unimportant whether the ab-
solutely best way of doing something is proposed,
plans should be penalized as failures if they are
ludicrously inefficient inaccomplishing the job.

A plan post-processor might be useful in overcoming
this kind of failure; (iv) the use of nondetermin-
lstic plans with parallel subsolution paths my
make a plan more robust at the possible expense of
introducing other failure modes.

2. Execution Failures--Execution failures
come in two broad categories: internal and exter-
nal . Internal failures sometimes called crashes,
can either be hard or soft. A hard crash is not
i mmediately recoverable, and the plan must be re-

initialized, 't my have been the result of either
unreliable hardware or software. By comparison, a
soft crash, wusually due to a high-level monitor
failure, will allow the robot to resume the plan

where it left off, after a delay for reloading a
fresh copy of the monitor. External failures are
of three main types: (1) The robot failed, and

knows that it failed. This my be due to either

152

systematic or randomerrors inits operators when
executed in the real world, since all actions have
inherent uncertainty in their outcomes. (Better
calibration should hopefully minimze systematic
errors.) There my also be other legal error
modes for operators, such as "timeouts" or
resource-exceeded constraints; (ii) the robot
failed, and didn'"t know that it failed (sometimes
called a mlssense error). This my be due to in-
finite looping or other errors in the flow-of-
control or to self-deception through imperfect
sensing of the true state of affairs; (i i i) the
robot succeeded, but thinks that it failed (some-
times called a nonesense error). Illegal error
messages or false alarms cause this kind of fail-
ure.

3. Decision Failures--Decision failures are
much more subtle. Five general types will be men-
tioned: (i) too [ittle or too much time devoted
to planning compared with execution. This depends
on the amount of time spent planning, the cost of
thinking, the utility of the goal, the penalty for

incurring undesirable irreversible state changes
in the real world, and so forth. Note that human
intuition my be very poor in this regard, since
most human planning appears to take place at the
subconscious level and therefore creates the il lu-
sion of being cost-free. Al'so, human planning and
execution can frequently take place simultaneously,
assuming that the execution process is not too
intellectually-demanding. A robot my not always
have this luxury; (i i) thefailuretocapitalize
on serendipity. Tunnel vision during execution
my cause the robot to push the solution out of
the way in order to recreate the solution ac-
cording toplan; (i i i) failureto adequately re-
parameterize plans based on past experience. This
is sometimes referred to as structural as distin-
guished fromstatistical learning; (iv) failureto
reorder priorities dynamcally. Multiple, possi-
bly conflicting goals must be continually moni-
tored during execution. This my lead to seem
ingly anomolous behavior from the point of view of
an outside observer, but be perfectly consistent
with internal objectives; (v) failure to distin-
guish local fromglobal failures, i.e., calling
upon the planner to replan from scratch, when sal-
vaging the existing plan with a minor elaboration
of an existing contingency branch of the current
plan would be adequate, or conversely, trying all
variations of a plan that was doomed to fail. [n
psychiatry this kind of pathology is referred to
as functional fixity.

A New Formul ation of the "Monkey and Bananas"
Problem

The original formulation of the "Monkey and
Bananas" problem® can be stated briefly as follows:

A monkey is in a roomin which a bunch of
bananas are hanging from the ceiling, just
out of reach. The monkey's problem, obvi-
ously, is to get the bananas. In the cor-
ner of the room is a chair. The solution



decided on by the monkey is to push the

chair to a location under the bananas,

climb on top of the chair, and then easily

reach for the bananas.
The major interest of Al researchers in this prob-
lemis that it is characterized by one level of in-
directness. That is, the solution requires an aux-
iliary device or tool (a chair in this case) not
obviously needed at the start of the problem I'n
1970 one of the authors (Coles) succeeded in formu-
lating a fairly straight-forward transliteration of
the problem into the world of the SRl robot.’ The
role of the tool was played by a ramp that allowed
Shakey to push a box off a platform onto the floor,

which he would not otherwise have been able to do.
Others, such as McDermott,® have sought to general -
ize the information-gathering aspects of the prob-
lem

In a more recent paper by Feldman and Sproul|?
this same problem has served as the basis for a
decision-theoretic approach. Al'though they are
mich more concerned with the use of a numerical
utility function during planning to develop a more
efficient search strategy, we have independently
reached the same conclusion regarding the positive
value of joininR decision analysis with a symbolic
robot problemsolver to facilitateintelligent de-

cision making under conditions of uncertainty. (See
references 10-12 for an introduceion to decision
analysis.) In particular, using this approach we
can create a decision tree that allows one to "Voll
back" the consequences of further information-
gathering operations in comparison with direct ac-
tion. Of course, decision analysis can never guar-
antee a desirable outcome; it can only provide rea-
sons why one course of action will in general be
better than another.

Because of the inherent unreliability of
Jason's ultrasonic texture/range-finder, we sought
to find a realistic reformulation of the monkey and
bananas problem that would also illustrate the
value of decision analysis when using this sensor.
Figure 3 shows an initial plan view of Jason's
world. It consists of two connecting rooms, R60
and R70, containing various boxes. Jason, cur-
rently in R60, is designated by the symbol "J" fol-
lowed by an arrow indicating his principal orienta-
tion. The symbol "W designates a wall, while the
"+" sign indicates a clearance border for naviga-
tion purposes. Jason's only current goal s
"IN(J,R70,100)," i.e., Jason desires to be in the
adjoining room with a utility value of 100 ergs.
Thus, the accumulated cost of all his effort (both
planning and execution) in accomplishing this goal

should not exceed 100 ergs; otherwise Jason will

have wasted his energy.

Nw in this formulation, although "thinking"
s assumed to be free of charge, every operation
Jason can carry out in the real world is energy
sumng. Table 2 shows the approximate cost of an
application of each of the ILOs relevant to this

con-
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FI GURE 3 PLAN VIEWOF JASON S WRLD
problem. Note that in general they entail a sub-
stantial start-up cost possibly plus an amount

proportional to distance mved or turned. The
proportionality constant, ¢, is on the order of
1/10 when distance, d(x,y), is measured in feet.
Al'so note that "pushing" is twice as expensive as
"moving." The preconditions and postconditions
indicated are typical of a STRIPS-like'® symbolic
problem solver.

Under normal conditions the problem solver
would yield the plan: (i) test for clear path to

door D67 (connecting Rooms RGO and R70), (i i ) Go
to Door; (i i i) Go through door. This could be ac-
complished for about 25 ergs, making it quite an
attractive plan. However, in this formulation
there is a box blocking the doorway, which would
have caused "clearpath" to fail. Thus, the prob-
lem solver might instead generate the plan (i) Go
tobox; (i i ) Pushbox(outoftheway); (i i i )Go
to door; (iv) Go through door.  This plan might
executed for about 35-40 ergs, still making it "
quite attractive.

However, in this particular world there is an
additional complexity regarding the pushability of
boxes. By definition, there are two general types

of boxes: short and tall. Short boxes are not
directly pushable because Jason's push bar would

overhang them Nevertheless, a short box could be
pushed by means of a pushable tall box as shown in
Figure 4. Furthermore, tall boxes come in two

varieties: smooth and rough. Smooth boxes are

Actual costs are accumulated by calls to Low
Level Operators (LLOs) which my vary depending
on the circumstances.



Postconditions
Approximate Delete Primary Secondary
Operator Description Cost (ergs) | Preconditions List Add List Add List
1. Clearpath(a) Ultrasonic 1 Face(J,a) Clearpath(a)
Torch deter-
mines vhether
an obatacle
blocks a
straight-line
path to point
# }.
2. Texture(B,p) |[Ultrasonic 1 Face(J,B) Texture(B)=
Torch deter- IN(J,Re$1) Rough or Smooth
mines whether IN(B,R)
the texture
of box B is
rough or
smooth with
probabilit .
3. Turn(t) Jason turns t 3+£Lt Clear(t)
degrees. 45 Angle(J, oc$1) Angle{J. g) Angle(J, att)
4, Move(d) Jason moves d MHod AT(J,ac$1)
feet. Clearpath(atd) AT(J,a) AT(J, atd)
IN(J,Re$1)
IN(J+d, R)
5. Goto(a) Jason goes to | S+od(J,a) |IN(J,R<$1)
point a in th% IN(a,R) AT(3,$1) AT(J,a)
same room,
6. Gotodoor(D) Jason goes to Sod(J,D) |IN(I,R$1) AT(J,$1) AT(J,D)
door D con- CONN(D, R, $1)
necting the
current room
to another ad
JYoining room.
7. Gothrudoor(D) | Jason goes 5 AT(J,D) |
through door IN(J,Re$1) IN(J,R) IN(J,R")
D. CONN{(D,.R,R'.S1)
B. Push(B,a) Jason pushes 8+20rd(B, a) [Pushable(B)
box B to IN(J,R$1) AT(B, b}
point a. IN(B,R) AT(Jib) AT(B, 2) ATCI, 8)
IN(a,R)
AT(B, b-$1)
AT(J,b)
Notes: d(x,y)- distance from x to y. o = 1/10. "$1" matches a single arbitrary constituent. "x$1"

means that x is bound to whatever value "$1" matches.

TABLE 2 INTERMEDIATE LEVEL OPERATOR (1LO) DESCRIPTIONS

Jason

the doorway were tall, the preceding plan might be

put into effect.
be short.

Thus,

However,

it is known by Jason to
in surch a case the existence of

an avajilable smooth tall box 15 a prerequisite to
solving the problem.

one

, but two tall boxes.

Now Room R60 contains not
1f Jason knew for a fact

that at least one of the boxes were smooth and

TA-TADB22-40

FIGURE 4 JASON USING A TALL BOX TO PUSH A SHORT BOX

pushable, while rough boxes are nonpushable (be-
cause they're too heavy). Now if the box blocking

754

which one it was, the following plan might be gen-
erated: (1) Go to the smooth box; (11i) Push the
smooth box to the low box (blocking the door);
{iii) Push both boxes (out of the way)}, (iv) Go to
door; (v} Go through door. Such a plan might be
executed for about 60-70 ergs and corresponds
closely to the original monkey and bananas problem.
If both boxes were known to be smooth, Jason would
choose to go to the box that minimized the com-
bined cost of going and pushing. Note that the



assymetrlc cost of these operations would in gen-
eral place a premum on the box closer to the low
box.  Since both boxes are approximately equidis-
tant to both Jason and the low box, Jason is indif-
ferent according to this criterion,

In this case Jason does not know a
neither, one, or both tall boxes are
smoth. The a priori probability distribution of
rough and smooth tall boxes is assumed to be uni-
form Jason has avallable through its ultrasonic
range-ftnder, a texture operation he can performto
determine whether a box |s smooth with probability

p, i.e.,
Prob(smooth|texture-smooth)=p

However,
priori whether

(
Prob(smooth|texture=rough) -1-p
Prob(rough |texture=smooth)-1-p
Prob(rough |texture=rough) =p.

Using comon sense, if p is very close to 1, then a
cost of 1 erg to measure texture is likely to be a
worthwhile investment conpared to the risk of going
to a possibly rough box while the other one might
have been smooth. On the other hand ae p ap-
proaches 0.5, the texture operation becomes in-
creasingly unreliable and the marginal utility of
the information obtained with respect to the cost
of gathering it becomes smaller. Beyond sone
specified point of indifference as p approaches
closer to 0.5 the cost of information gathering
becomes prohibitive conpared to Its value,.

Testing texture would actually be counterproduc-
tive, and the best strategy would be to choose a
box at random gotol t , andtrytopushl t . In
the worst case for which a solution were possible,

l.e., the first box tried ws rough while the
other was smooth, the cost might be between 80 and
110 ergs, therefore still worth trying

Now Jason has some empirical statistics on the
reliability of his range finder that indicate that
p=0.95.  \hat should he do? Texture operations are
expensive and risky. Yet any action my be frought
withperil. Jason turns to decision analysis to
provide an answer. Figure 5 shows Jason's Decision
Tree for the relevant portion of this problem  The
results of the analysis are presented In the next
section.

Results of the Decision Analysis

The internal representation of the decision
tree for evaluation purposes is as a two-page
"SEETREE" program* which is very similar in ap-
pearance to Fortran IV. Each node, whether a deci-
sion node or a probability node, is defined as a
separate function with its successor designated by
the identifier "NEXT." The SEETREE program is
translated into a standard FCRTRAN |V program by a
translator package operating over the ARPA Net at

UCLA  Upon execution, the system generated a 56
node tree. Table 3 shows the "selected decision*
for various values of p. The system also automati -

cally provides rollback values of al | subsequent
decisions in the tree and the mnimm mximm
mean, and standard deviation of rewards for the
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FIGURE 5 JASON'S DECISION TREE

lottery on the tree.

A cumulative probability
distribution of lottery values is also plotted

automatically.
Certain
Equivalence
of
Selected Certain Alternative
P Decision Equivalence Decision
0.80 | GOTO Boxb62 67.500 67.250
0.90 | GOTO Boxb2 67.500 67.500
0.95 | TEXTURE Boxb2 67.625 67.500
1,00 TEXTURE Box62 67,7350 67,300

TABLE 3 RESULTS OF DECISION TREE EXECUTION

Inspection of Table 3 reveals Jason's Indif-

ference point to be p=0.9,
decision

alence for either
Jason's historical
his optimal

before going to either box. If
then he should go
Ot herwise he should go directly to the
further masurement,
increase in the confidence of
meke a difference in Jason's subse-

back "smooth,"
that box.
other box without
ther
ture would not

quent behavior.

*

Providing p<l. Of course, if p=l and the first
box was discovered to he rough, then testing the
texture of the second box would be useful: if it
too were rough, Jason could definitively give up
without moving.  However, if there is even the
slightest possibility that the sensor was in er-
ror (p<Il), Jason would be compelled, Iacking

other alternatives,

the

since the certain equiv-

s the sane.
data suggests a value of p-0.95,
strategy should be to measure texture

Since

sensor reports

| mmedi ately to

since fur-

I ts true tex-

toverify a box's roughness
empirically by goingtoitandtryingtopushit .
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FIGURE 7 PLANI

Now, in the case where Jason goes to either

;

the first or the second box and discovers it to be
rough (i.e., non-pushable), he must then go to the
alternative box in the hope that it might turn out
to be smooth, regardless of what he thought it

likely to he.
proven to he rough can Jason give up with asgsurance.

Only if hoth boxes are directly

Based on the above analysis, direct output

from the Jason simulator is provided in Figures 6-

1t.

conciit ions.,

Figure 6 provides a statement of the initial
Comments are indicated between slashes.

The English sentences appear just as they would be

typed into the Jason terminal for Interactive exe-

cut lon.

model shown in Figure 3 by a simple natural-
language parser based on a precedence grammar.

They are translated into an internal grid
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Figure 7 shows the form of the plan output by
t he synbolic problem sol ver (comments inserted be-
tween sl ashes). Planl is then executed interpre-
tively. I n this case under the assunption that
texture of Box62 is reported t o be snooth and fur-
ther that it is actually smoth, and therefore
pushahle, the fi nal cost of the plan under sinu-
| ated execution is 92.9%5 ergs.
within the specified utility of 100,
achieved a net profit of over 7 ergs.

Jason has

Figure 8 shows the initial state of R60 with
the proposed trajectory marked by arrows ("+' sign
have been suppressed. ). In Figure 10 Jason has
pushed both B61 and B62 out of the way. Finally,
Figure 11 shows Jason havi ng executed the Cotodoor
Got hrudoor portion ot his plan- In execution, thi
pl an produced a string of 19 individual nove and
turn commands, each of which generates it s own
not or command or how Level Operator (LLO, re-
sulting in a 50-page listing of grid positions.
The simul ated executi on took approximtely 3 sec-

t he

Since this value i s

Acknowl edgnent s

The authors would like to | hank the Depart -
ment of Electrical

Engi neer i ng and Conputer Sei -

ences of the University ot California at Berkel ey
for i ts continuing support of the Jason Project.

I n particular,
Bal dwi n of
speci al
assi stance of D. Ranon Zanora oi

Prof. David Hodges and M. Leonard
the EECS nachi ne shop deserve

W al so wish to acknow edge the
t he Deci si on

menti on.

Anal ysis Group at Stanford Research Institute.

S

/
S 2.

onds on t he DG 6400 and 7.6 seconds on t he POP-10.

Based on prior experience,
execution in tile real world will
of 3 m nutes.

we expect that actual
take on the order

Sunmary and Fut ure VWr k

The major contribution of this paper
onstration, by neans of a we]l known exanple, of
how deci si on anal ysi s can be used to inprove the
deci sion-making capability of arobot under condi -
tions ot uncertainty in its perceptual inputs.
that Jason has been denponstrated over the ARPA Net
our next priority will be to link the decision
anal ysis software with the Jason control software
as an i ntegrated system W can then experinment
dynam cally with different boundary conditions as
well as different levels of reliability tor textur
measur ement s.

In the | onger termwe have outlined a nunber
of objectives. Qur intermediate goals include the
devel opnent of software to handle (i) multiple
(possibly conflicting) time-dependent goals, (i i)
dynamc tracking (of a cooperative agent), and
(iii) dynam c real-t ime collision avoidance during
navi gation, including the evasion of active agents

i s a dem

Now

) 7.

e

10.

such as slowly noving people in a crowded corridor.

Qur long term goals
Jason-1li ke robot

include the application of a
to factory or warehouse work wher

the environnent is fairly well controlled.

The Ber kel ey robot project is still in the
m dst of design and construction. Mny devices
have been designed, tested, and installed. A con-

siderabl e anobunt of software has been written and

debugged. O her devices and prograns are still i n
t he devel opnent stage. |t i s planned that a fully-
integrated robot vehicle will again be operational
i N the near future. Once operational, Jason will
be used as a test bed for the devel opnent of fu-

gener al - pur pose nobil e robots wi th even
sophistication and intelligence.

ture,
greater

e
11.

12.

14.
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ABSTRACT

AL is an high-level programming system for
specification of manipulatory tasks such as assembly of
an object from parts. AL includes an ALGOL-like source
language, a translator for converting programs into
runnable code, and a runtime system for controlling
manipulators and other devices. The system includes
advanced features for describing the motions of
manipulators, for using sensory information, and for
describing assembly algorithms in terms of common
domain-specific primitives. This paper describes the
design of AL, which is currently being implemented as a
successor to the Stanford WAVE system.

AN OVERVIEW OF AL

This short paper cannot cover the subject of AL in
depth; a complete discussion may be found in AL, A
Programming System Jor Automation, Stanford Artificial
Intelligence  Laboratory Memo AIM-243, Stanford
University Computer Science Department Report STAN-
CS-74-456, by the authors of this paper.

INTRODUCTION

The development of robot manipulators such as
the "Unimate" has led to the belief that these tools are
in some way general-purpose devices and that they
might be programmed like a computer As a general-
purpose programmable device, the robot manipulator
provides a possible answer to the need for automation
of assembly in batch manufacturing industries where
small production runs rule out the use of special-
purpose equipment.

We are implementing a system called AL for small
scale batch manufacturing where setup time is the key
factor. We rely on a symbolic database and previously-
defined assembly primitives to minimize programming
time. The system is capable of high-level planning and
intelligent interpretation of user-defined primitives. The
principal aim of this work is not to provide a factory
floor programming system but rather to design a
language which will be a tool for investigating the
difficulty, necessary programming time, and feasibility of
writing programs to control assembly operations.

PHILOSOPHY OF DESIGN
DATA AND CONTROL STRUCTURES

The principal mode of input to AL is textual, as
opposed to spoken or manual (joystick). There are
levels of complexity which are much more readily
transmitted from man to machine through an interlace of

symbolic text, for example, simultaneous motions of
two arms and termination and error conditions are more
likely to be wunambiguously described through the
medium of text because a textual language can provide
a consistent framework for such intuitive ideas. Non-
textual forms of input for defining target locations and
suggesting arm trajectories to avoid collisions are most
useful when applied in conjunction with a program text
which supplies the overall intent of the programmer.
The supervisor level of AL is simple enough to allow
natural teaching by showing; it should be easy to
interface such devices as joysticks and vocal input into
AL, although we do not intend to do so at present.

Experience with languages like SAIL and WAVE
has shown that text macros are a useful feature; they
reduce the amount of repetitive typing. AL has a
general-purpose text macro system interfaced into the
scanner and parser.

The datatypes available include those types
necessary to refer to one-dimensional measures (like
distance, time, mass) and three-dimensional measures
(like directed distance, locations, orientations).
Arithmetic operators are available not only for the
standard scalar operations like multiplication and
addition, but also for such operations as rotation and
translation.

Provision is made for simultaneous execution of
several processes This allows calculation and arm
motion to take place simultaneously; several
manipulators can be in independent or coordinated
motion.

MOTION SPECIFICATIONS

Experience with WAVE has shown that calculating
trajectories for manipulators is desirable but time-
consuming. Trajectory calculations, together with other
calculations which need only be performed once, are
done at compile time. This allocation of effort
drastically reduces the computing load at execution time
and eliminates wasteful recomputation every time a
sequence of actions is executed.

A wide range of exceptional conditions can occur
during the motion of a manipulator. Appropriate action
must be taken as soon as any of these occurs, for
example to start up a new concurrent process or to
notify the wuser. Therefore, AL allows the flexible
specification of conditions to be monitored during
motions (and during execution of blocks of code in
general) and what to do in the case that a tested
condition occurs

USE OF A PLANNING MODEL

Since locations are not known exactly during the
planning of a trajectory, there is a clear distinction
between planned values and runtime values. Planned
values are used for trajectory calculation; at runtime,
trajectories are modified if necessary to account for



any discrepancies. The planned values are therefore a
database on which trajectory calculations are computed.

Assembly tasks require that one object be affixed
to another. We model this by having a semantic
attachment between objects, if two objects are affixed,

and one moves, the second one should move
accordingly, that s, its planning value should be
properly modified. The planning model includes

information on attachments of objects. The affixment
concept carries over to the runtime system, which does
the equivalent modifications of the actual values. This
saves the wuser the tedious bookkeeping operations
required to determine where an object is after its base
has been moved.

More generally, the compiler maintains a wide
variety of information about expected runtime states.
This includes information like the accuracy within which
the planning value is known, how heavy an object is,
how many faces it has on which it can rest, how wide
the fingers of an arm should open to grasp it. This
information may come from several sources, including
explicit assertions by the user and built-in knowledge
about the system hardware. AL has a general
framework for representing and using such knowledge.

USE OP DOMAIN-SPECIFIC
KNOWLEDGE

The system will eventually have enough domain-
specific knowledge to allow programs to be written in
terms of common assembly operations, rather than
exclusively in terms of detailed single motions. At the
simplest level, this involves a library of common
assembly macro-operations that can be conditionally
expanded to perform particular subtasks. Beyond this,
we foresee an interactive system that can take a "high
level” description of an assembly algorithm and fill in
many of the detailed decisions required to produce a
consistent and efficient output program.

A user will be able to specify different parts of a
task at various levels of detail. The system is designed
to accept explicit advice telling exactly how some
particular subtask is to be accomplished. This is
especially important for early versions of AL, which are
not likely to be very "smart" and will therefore require
a fair amount of explicit help. Other parts can be
described by assertions which specify prerequisites and
effects. The system will then complete the program
incorporating the advice and satisfying the other
assertions. The system can show the user how it is
filling in the details to produce an output program, and
why. This is very important both for debugging and for
explaining to the user any requests for advice that it
must make

THE RUNTIME SYSTEM

The calculation of trajectories is time-consuming
but not time-critical; servoing of devices is time-critical
but not especially time-consuming. Therefore, the
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compiler is written in a high-level language, SAIL, which
runs on a large timeshared computer (a POP-10) and
the runtime system is designed to run on a dedicated
minicomputer (a PDP-11/45).

The runtime system supports simultaneous
execution of many processes. Several manipulators or
devices might be running simultaneously, and each motor
requires a separate process; several condition monitors
might be active; several code segments (doing, perhaps,
calculations) might be simultaneously active. Those
processes which are dealing with real-time devices
(joint  servos and condition checkers) must be
guaranteed service at regular intervals; the computation
processes can fill in any time gaps.

The wide range of conceivable tasks implies that
pure hardware servoing does not in general suffice.
The reason for this is that hardware servoing restricts
use to one of a small number of servo modes (typically

position, velocity, or force), and has no provision for
motions of accommodation or motions whose modes
might change in midstream due to some software-

Pure hardware servoing could not
to account for new feedback
devices or methods. A philosophy of software servoing
has these advantages; It is possible to program the
manner in which feedback is to be used, to interface
new types of sensors, to modify the servo while the
arm is in motion, to supply the driving program with
information concerning the success of the motion as well
as to keep it up-to-date on the arm status. It also
allows coordination of several arms, with one acting as
a master and the others following. Hardware servoing
would not save computation since the computer would
need to perform an equivalent servo -calculation in
order to understand what the manipulator is doing.

detectable condition.
be readily modified

GENERAL SYSTEM OUTLINE
HARDWARE

Currently two Stanford Electric Arms, built by
Victor Scheinman [Scheinman], are available. They are
called YELLOW and BLUE. Each has six joints and a
hand that can open and close. The joints are controlled
by electric motors; each joint has both position and
velocity feedback. Motor drives are sent from the
computer to the arm via a digital-to-analog converter

(D-to-A); feedback signals are routed through an
analog-to-digitat converter (A-to-D) back to the
computer.

Various other devices are designed and
implemented as needed. We use tools, jigs and special
markings for several purposes: to render a task
possible (an example is the arm itself), to improve

efficiency (a mechanical screwdriver), and to overcome
some of our sensory and mechanical limitations (a screw
dispenser)



SOFTWARE

See figure | for a picture of the system,

The SUPERVISOR is the top level of AL ft runs on
the timesharing computer and provides an interface
between the user and the other parts of the system: 1)
listening to the user's console and interpreting simple
command language input; 2) controlling the compiler,
starting it and relaying its error messages back to the
user; 3) signalling the loader when it is necessary to
place compiled code into the mini; 4) handling the
runtime interface to the mini.

The USER sits at a console and makes requests of
AL. These fall into several categories; compilation,
loading, execution of programs, debugging of code,
requesting of status information, asking for immediate
arm motion, saving and restoring the state of the world
at safe points, requesting explanation of certain
compiler decisions. There are two different consoles at
which a user can sit: one is connected to the
timesharing computer, through which he can speak to
the supervisor and all the parts of AL residing on the
timesharing computer; the other is connected to the
mini, and through it the user can investigate the runtime
system and cause modifications.

The COMPILER reads AL programs from files (or,
optionally, directly from the wuser's console) and
produces load modules, The compiler is divided into
three phases: The PARSER, which produces parse trees
of the program, the EXPANDER, which expands those
parse trees by replacing high-level primitives with low-
"level primitives, and the TRAJECTORY CALCULATOR
and CODE GENERATOR, which creates the output files

The LOADER takes the load modules prepared by
the compiler and enters them into the mini's runtime
system. Address relocation and linking are done at this

time. The loader also sets up the data area in the
runtime interface in the timesharing computer; these
data include output strings, procedure linkages, and

information necessary for diagnostic purposes during
runtime. Loading is often done in a partially incremental
fashion, installing new code following previously loaded
code.

The RUNTIME INTERFACE, which resides in the
timesharing computer, is charged with initiating the mini
program, fielding procedure calls from the running
program to procedures on the timesharing machine,
returning values from these procedures, and fetching
values from the mini for debugging purposes. The
interface has the power to interrupt the execution of
the program and to modify the status of the runtime
system, for example, by patching in additional programs
or modifying the values of some variables. This allows
the user to control the program through the timesharing
computer.
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FIGURE 1.

The RUNTIME SYSTEM is the set of programs
which reside in the mini. This system includes kernel
programs for time-slice cpu sharing and process control
and a set of dynamically created processes. These are
of three basic types: a) An INTERPRETER examines the
code prepared by the compiler and executes the
numeric computations requested. When a move is to
be started, the interpreter creates a servo for each
joint and waits until all these servos are finished, b) A
SERVO handles the motion of one moving joint, c) A
CONDITION-MONITOR  repeatedly examines certain
conditions (whatever the programmer has specified). If
it should discover that its condition has occurred, it
creates an interpreter to take appropriate action. The
runtime system also includes routines for communication
with the runtime interface in the timesharing computer.



AN EXAMPLE

A simple task dealing with the objects shown in
Figure 2 illustrates some of the features of AL;
1. Pick up the bracket with the YELLOW
arm and position it next to the beam so
that the holes line up,
2 Pick up the bolt with the BLUE arm,
3. Fasten the bracket to the beam by
inserting the bolt in the holes,
4. Return the arms to their park positions.
Some of the features to be demonstrated are: the affix

structure, reference frames, dimensions, and multi-
processing. We demonstrate these capabilities by
presenting a highly commented AL program to
accomplish the task stated above. Except for the

missing macro bodies, this program is complete; it could

perform as indicated.

AL is a multi-level programming language; at one
extreme the wuser can write detailed, system-like
programs and at the other he can describe the tasks
and any partial ordering among them and let the system
determine 'necessary details. Our example is written in
an intermediate level. In particular, it assumes that
there are several general-purpose macros and routines
which understand how to GRASP and RELEASE things
and carry out a NORMAL_SEARCH to insert something
\nVo ahole

Capitalized words in the example are key words

wilhin AL. Lower case words are user-defined
identifiers. Comments are surrounded by curly
brackets.

whole_task BEGIN

{First declare the necessary FRAMEs and describe how

they are initially related A FRAME is a coordinate
system It has two components, the location of the
origin (a distance VECTOR) and the orientation of the

axes (a ROT) Frames are typically used to describe
objects and important features of objects.  There are
several predeclared frames in  AL. STATION is the
frame which represents the work station's frame of
reference Each hand available to the system also has
a frame variable, whose value (continually updated) is
the postion of that hand. Currently there are two

such frames  YELLOW and BLUE

The attach  structure representing the initial  world is
shown in Figure 3 The arrows indicate how
movement of a frame affects other frames If a frame
at the tall of an arrow is moved (by the arm, visually
updated, etc ) the frame at the head of the arrow will
be automatically updated The double arrows are the
results of RIGIDLY AFFIXmg one frame to another)

the
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FRAM E beam, beam_hole, FRAME bolt,
FRAME bracket, bi acketjiole, bracket_grasp;
beam - FRAME(ROT(Z, 90*DEC), VECTOR(10.6,0)>;
{The beam is expected to be positioned at (WjSP) in
the dation® coordinate system (the default unit for
distance measurements is centimeters) and rotated 90
degrees about the station's Z vector AL knows about
dimensions like DEC for degrees. Dimensions are

adjuncts to variable types, new ones can be defined in

terms of old ones}

beam_hole *- beam* TRANS(ROT (X, 90*DEG).
VECTORO.0O,?)),

{The TRANS represents the position of the beam hole
with respect to the beam. The premultiplication by the
frame beam positions the beam*hde in the dation's
coordinate  system)

AFFIX beam”™hole TO beam,
{As shown in figure 3)

ASSERT FORM(DEPROACH, beamjiole.

TRANS(NILROT,VECTOR(0,0,-3));

{Trajectories consist of a path from the current
position, through a departure point, possibly through
some via points, through an approach point, and
finally to the destination The primary use of via
points is to avoid collisons during the motion All
FRAMEs have a DEPROACH TRANS associated with
them TRANSes are essentially the same as FRAMES
Whenever  leaving (or moving to) a FRAME the
standard departure  (or  approach) used is that



{The initial worldl
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(After picking up the partsl
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FIGURE 3.

FRAMEs DEPROACH TRANS The dation has a
DEPROACH TRANS which is three inches above it
Whenever one FRAME is AFFIXed to another, by
default the former takes on the latter's DEPROACH
The result of this ASSERT is that the arms will
approach the beam hole from the side instead of from
above.}

bracket - FRAME(ROT(Z.45* DEG).
VECTOR(20,140))

bracket, hole - bracket*
TRANS<ROT(X.180*DEG).VECTOR(3,3,0));

AFFIX bracket.hole TO bracket;

bracket_grasp <-- bracket*
TRANS(ROT(X,180*DEG),VECTOR(0,3,3));

AFFIX bracket_grasp TO bracket RIGIDLY;

{The RIGID AFFIXment insures that a change of
bracket grasp  will automatically change bracket, which
in turn will automatically change bracket-hole. This is
quite convenient if the position of the whole ‘object’ is
being updated by one  grasping position (ie.
bracket grasp) )

bolt - FRAME(ROT(Z.90*DEG)*
ROT(X,180*DEG),VECTOR(16.30,0));

{The rotation portion of the FRAME has been
gpecified as a composition of two primitive rotations.)

DEFINE OZ - "72.007789*DYNES"
DEFINE INCHES - "254*CM",

{Some of the standard macros are defined next}

DEFINE grasp

(TRANS specialL departure.special approach,

FRAME ATOM the.arm (DEFAULT YELLOW).

FRAME object,grasp_point,
thing_object_af fixed _to;

DISTANCE SCALAR opening_before_departure,
openmgJor_approach(DEFAULT 15*CM),
thickne$$(DEFAULT O.UINCHES))

- " {body of macro goes here) ",

{The expansion of such a macro can depend upon the
supplied  arguments, the DEFAULT arguments, and
any values in the current planning model.)

DEFINE release
(FRAME ATOM the arm(DEFAULT YELLOW);
FRAM E the_object,the_new_parent,
DISTANCESCALAR the.openmg
(DEFAULT 15*CM))
- M {body of macro goes here) ":
DEFINE normal_search
(FRAME ATOM the_arm(DEFAULT YELLOW);
DISTANCE SCALAR mcremem(DEFAULT .3*CM),
distance_iwd,
FORCE SCALAR stoppingjorce,
SCALAR number_of _tnes(DEFAULT 9))
o " {body of macro goes here) ";

{This would include some automatic error recovery and
a call to the operator if something drastic goes wrong.}



COBEGIN
{This COBEGIN-COEND construction describes  two
independent  subtasks (one for  YELLOW and one for
BLUE) which can be executed in any order determined
by the runtime system, in paralld or serially.  This, of
course, assumes that the two arms work in completely
Separate  parts of the workstation so there is  no
possibility of a collison}
ypickup BEGIN {pick up the bracket with yellow}
graspOobject- bracket ,grasp_point-bracket_gr asp,
opening_for_approach-3*CM);
{Only the necessary parameters need to be
specified. By default the YELLOW arm will be
used and there will be no special approaches or
departures. One effect of grasp is to AFFIX the

object to the arm)

M OV E bracket.hole TO beam.hole +
VECTOR(0,0,- 3) WRT beam.hole,

holds the bracket to
positions itself so

{The YELLOW arm (since it
which  bracket hole is AFFIXed)
that the bracket hole lines up with the beam hote,
but is 3 cm away from the beam hole The WRT
operator is one way of describing a vector within a
frame of reference other than the stations}

MOVE YELLOW TO =«
VECTOR(0,0,6) WRT beam.hole
ON FORCE(Z WRT beam_hole)>50*0OZ DO
STOPYELLOW
ON ARRIVAL DO

ABORT("*ERROR* bracket went too far");

position of the arm
relative to the
The purpose of this move is
the beam If the
sense an  opposing
succeed in moving
In order to check

the current
cm in Z

{The « represents
The am moves 6
beam hole's frame

to push the bracket up against
beam is there, the arm toill
force. If not, the arm will
forward the prescribed 6 cm.

for these possbilities, two condition monitors have
been included with the MOVE statement. The
first one monitors the force and stops the arm if
the force exceeds 50 ounces (which  means
everything is ok). The second one is an interrupt
type condition If the arm successfully carries out

the complete MOVE, this monitor is awakened, the
message is printed, and control is given to an
pperator.)

END ypickup;

bpickup. BEGIN {pick up the bolt with blue]
grasp(the_arm-BLUE,the_object-boU,graip_point-bolt,
opening_forapproach=3*CM);
END bpickup,
COEND;

{Figure 3 shows the world after the parts have been

picked  up.)
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MOVE bolt TO beamjiole+
VECTOR(0,0,-5.3) WRT beam_hole,

{The BLUE arm postions itself so that the bolt is
lined up with the beam hole and its tip is 3 cm away
from Che outside of the bracket hole J

normaUearcMBLUE, 2*CM, |.6*CM, 60#0Z. 9);

{This pushes the bolt through the bracket _hole and
partly into the beam hole If control continues past
this statement the bolt is assumed to be partly in the
hole)

MOVE BLUE TO * *
FRAME(ROT(Z,90*DEC),VECTOR(0,0,4))
ON FORCE(Z WRT BLUE) > 60*0Z DO

STOP BLUE,
{This pushes and twists the bolt into the hole When
the force exceeds 60 ounces, the bolt is assumed to be

the hole There is no check to

seats properly)

completely seated in
make sure the bolt

COBEGIN
parky BEGIN prelease the bracket and park)
relea$e(the_object-bracket,
the_opening-3!i:CM,the_new_parent-beam);
MOVE YELLOW TO YPARK,
END parky.
parkb BEGIN {release the bolt and park}
releasedhe_arm-BLUE.the_object-bolt,
the_opening-3* CM.the_new_parent-beam);
MOVE BLUE TO BPARK.
END parkb.
COEND.
END wholeaask



CONCLUSIONS

AL is important for several reasons. It shows
what sort of considerations are necessary for flexible
control of mechanical manipulation. It demonstrates the

feasibility of programmable assembly. It provides a
research tool for investigation of new modes of
software servoing, assembly primitives, arm-control

primitives, and interactive real-time real-world systems.

AL is currently limited by the lack of certain
features which would make it more competent. Many of
these have to do with the fact that feedback is used
only in a threshold way; either a monitor triggers or it
does not. Fine control of the arm would be enhanced
by more sensitive force-sensing elements on the hand
and a means of programming accommodating, non-
threshold response to this sensory input. Visual
feedback should be implemented to provide better
positioning capability, error detection, and error
recovery Moving assembly lines imply that AL should
be able to understand motions which it does not cause
directly through manipulation; objects should have a
dynamic capablility. Collision detection and avoidance
remain difficult issues. AL would be more error-free if
the trajectory calculator could ensure that the arms
ne”er interfere with each other or with objects in the
current world.

T e L
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