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The nonlinear eigenvalue problem ∆u+λeu = 0 in the unit square with u = 0 on the boundary is
often referred to as “the Bratu problem” or “Bratu’s problem.” The Bratu problem in 1-dimensional
planar coordinates, u′′ + λeu = 0 with u(0) = u(1) = 0 has two known, bifurcated, exact solutions
for values of λ < λc and no solutions for λ > λc. The value of λc is simply 8(α2 − 1) where α is the
fixed point of the hyperbolic cotangent function. Numerical approximations to the exact solution
of the one-dimensional planar Bratu problem are computed using various numerical methods. Of
particular interest is the application of nonstandard finite-difference schemes known as Mickens fi-
nite differences to solve the problem. In addition, standard finite-differences, Boyd collocation and
Adomian polynomial decomposition are employed to generate numerical solutions to this Bratu
problem and the results compared.

Keywords: Mickens difference, nonstandard finite-difference scheme, Bratu problem, bifurca-
tion, nonlinear eigenvalue problem

Introduction

In this paper the results of applying a nonstandard (“Mickens”) finite-difference scheme
to a specific boundary value problem related to the classical Bratu problem [4] shall be
presented. The Bratu problem is an elliptic partial differential equation which comes from
a simplification of the solid fuel ignition model in thermal combustion theory [9]. It is also
a nonlinear eigenvalue problem that is often used as a benchmarking tool for numerical
methods ([2], [3], [7]). In [11], Jacobsen and Schmitt provide an excellent summary of the
significance and history of the Bratu problem. In this paper, a Mickens finite difference [14]
is applied to the 1-dimensional planar Bratu problem. Similar work applied to the Bratu

∗The author can be reached by electronic mail at buckmire@oxy.edu.

1



problem in cylindrical coordinates, more commonly known as the Bratu-Gel’fand problem
[10], has been presented elsewhere [6]. These two versions of the Bratu problem were selected
because they have known exact solutions which can be used to check the accuracy of solutions
generated by numerical experiments. The goal of this paper will be to compare the solutions
to the planar one-dimensional Bratu problem produced by Mickens differences to solutions
produced by other numerical techniques.

The classical Bratu problem is

∆u + λeu = 0 on Ω : {(x, y) ∈ 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} (1)

with u = 0 on ∂Ω (2)

The 1-dimensional (planar) version of this problem is

u′′(x) + λeu(x) = 0 0 ≤ x ≤ 1, (3)

with u(0) = 0 and u(1) = 0 (4)

In section 1 of this paper the exact solution of the one-dimensional planar Bratu problem
will be presented. Details of the bifurcated nature of the solution are given. In Section 2
brief explanations of the various methods chosen to solve the will be presented. In Section
3 numerical solutions generated using nonstandard finite differences will be compared to
solutions produced using different numerical methods: standard finite differences, a pseu-
dospectral method due to Boyd [3] and the Adomian polynomial decomposition algorithm
[7]. All of the approximate solutions are compared to the exact solution. The paper shall
conclude with some overall comments and observations based on the numerical results.

1 The 1-dimensional Planar Bratu Problem

The exact solution to (3) is given in [2] and [7] and presented here as

u(x) = −2 ln

[
cosh((x − 1

2
) θ

2
)

cosh( θ
4
)

]
(5)

where θ solves

θ =
√

2λ cosh

(
θ

4

)
. (6)

There are two solutions to (6) for values of 0 < λ < λc. For λ > λc there are no solutions.
The solution (5) is only unique for a critical value of λ = λc which solves

1 =
√

2λc sinh

(
θc

4

)
1

4
. (7)

By graphing the line y = θ and the curve y =
√

2λ cosh( θ
4
) for fixed values of λ = 1, 2, 3, 4

and 5 the solutions of (6) can be seen as the points of intersections of the curve and the line
in Figure 1. Clearly, there is only one solution when the y = θ line is exactly tangential to
the y =

√
2λ cosh( θ

4
) curve, which leads to the condition given in (7).
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Figure 1: Graphical depiction of dependence of solutions of (6) upon λ

Dividing (7) by (6) produces:

4

θc
= tanh

(
θc

4

)

⇒ θc

4
= coth

(
θc

4

)

⇒ α = coth (α)

The critical value θc is four times α, which is the positive fixed point of the hyperbolic
cotangent function, 1.19967864.

θc = 4.79871456 (8)

The exact value of θc can therefore be used in (7) to obtain the exact value of λc.

λc =
8

sinh2
(

θc

4

) = 8(α2 − 1) ⇒ λc = 3.513830719 (9)

The relationship between λ and θ for some values of λ less than λc are given in Table 1.
Obviously, when λ = λc then θ1 = θ2 = θc and when λ > λc there are no solutions to (6).
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Figure 2: Bifurcated nature of the exact solution to the Bratu problem

Figure 2 shows how the maximum value of the solution function (5) depends on the
nonlinear eigenvalue λ with the critical value of λc highlighted at the “turning point.” Table 1
and Figure 2 are two different ways of depicting the property of the solution that it is double-
valued for λ < λc. In the next section, numerical methods to compute these solutions to
(3).

2 Numerical Methods

In this section of the paper, the details of various numerical methods used to compute
solutions to (3) shall be given. The first method involves approximating the differential
equation with finite differences. Both standard and nonstandard (Mickens) finite-difference
schemes are used. In addition to the methods which use finite-differences, two pseduospectral
methods are used. The first, due to Boyd [3], uses Gegenbauer polynomials as basis functions.
The second, due to Adomian [1] assumes the solution can be represented as an infinite series
of polynomials. Lastly the problem was also solved using a shooting method easily available
in Matlab.

λ θ1 θ2

0.5 1.0356946 13.0382393
1.0 1.5171645 10.9387028
1.5 1.9397652 9.5816998
2.0 2.3575510 8.5071995
2.5 2.8115549 7.5480981
3.0 3.3735077 6.5765692
3.5 4.5518536 5.0543427
λc 4.7987146 4.7987146

Table 1: Corresponding values of θ for various λ ≤ λc
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2.1 Finite Difference Methods

To solve a boundary value problem using finite differences involves discretizing the differential
equation and boundary conditions. This method transforms the problem into a system
of simultaneous nonlinear equations which are then usually easily solved using Newton’s
method. There are many choices for how to approximate the derivatives which appear in a
differential equation. In this section of the paper standard finite differences and nonstandard
finite differences will be deployed. Nonstandard finite differences have been extensively
studied by Professor Ronald E. Mickens of Clark Atlanta University ([15], [16], [17]). The
first step in the computation of the numerical solution of (3) using a finite-difference method
is to approximate the continuous domain of the problem with a discrete grid. The grid
chosen was {xj}N

j=0 on the interval 0 ≤ x ≤ 1 where

0 = x0 < x1 < x2 < . . . < xj < . . . < xN = 1. (10)

For a uniform grid, the grid separation parameter h is constant and h = 1/N with xk = 0+kh
for k = 0 to N . Using a standard finite-difference scheme, the discrete version of the planar
Bratu problem (3) will be

uj+1 − 2uj + uj−1

h2
+ λeuj = 0, j = 1, 2, . . . , N − 1 (11)

A nonstandard finite-difference scheme for (3) is

uj+1 − 2uj + uj−1

2 ln[cosh(h)]
+ λeuj = 0, j = 1, 2, . . . , N − 1 (12)

The boundary conditions given in (4) become

u0 = uN = 0. (13)

The discretization given in (12) is an example of a Mickens discretization. Mickens has
repeatedly shown that one can find nonstandard finite difference schemes which produce
exact discrete solutions of a differential equation [17]. For example, in [13] the following
Mickens scheme

uj+1 − uj(
1 − e−αh

α

) = −αuj (14)

is an exact nonstandard finite difference scheme for the differential equation
du

dx
= −αu.

Also found in [13] is the following exact Mickens discretization for
du

dx
= −u3.

uj+1 − uj

h
= −

(
2uj+1

uj+1 + uj

)
uj+1u

2
j (15)

A Mickens difference is a nonstandard finite-difference scheme which (1) approximates a
derivative using a nonlinear denominator function and/or (2) uses “non-local” or “off-grid”
representations of expressions in the differential equation.
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The scheme given in (14) is an example of the use of a nonlinear denominator function

in a Mickens finite difference. Note that the denominator function in (14), φ(h) =
1 − e−αh

α
has the property that in the limit as h → 0, φ(h) → h. In general, the denominator function
φ in a Mickens finite-difference for the first derivative

u′ ≈ uj+1 − uj

φ(h)

has the property that φ(h) = h + o(h).
The scheme given in (15) is an example of a “non-local” discretization appearing in a

Mickens difference. The standard discrete representation of u3 would be expected to be
simply u3

j . However the unexpectedly florid discretization of this cubic term that appears on
the right-hand side of (15) leads to an exact discrete solution to the differential equation.

The nonstandard finite difference scheme given in (12) is a Mickens difference for a second
derivative

u′′ ≈ uj+1 − 2uj + uj−1

φ(h)

where the denominator function φ(h) = 2 ln[cosh(h)] = h2 + o(h2). Thus, in the limit as
h → 0 the standard finite-difference scheme (11) and the Mickens-difference scheme (12)
will be identical. However, for the finite values of h at which numerical computations are
conducted the hypothesis is that the nonstandard form of the denominator function φ(h)
will lead to improved accuracy.

2.2 Boyd collocation

Boyd [3] developed a pseudospectral method to produce approximate solutions to the classical
two-dimensional planar Bratu problem

∂2u

∂x2
+

∂2u

∂y2
+ λeu = 0 on {(x, y) ∈ −1 ≤ x ≤ 1,−1 ≤ y ≤ 1} (16)

with u = 0 on the boundary of the square. The basic idea is that the unknown solution
u(x, y) can be completely represented as an infinite series of spectral basis functions

u(x, y) =
N∑

k=1

akφk(x, y). (17)

The basis functions φk(x, y) are chosen so that they obey the boundary conditions and
have the property that the more terms of the series that are kept, the more accurate the
representation of the solution u(x, y) is. In other words, as N → ∞ the error diminishes
to zero. For finite N the series expansion in (17) is substituted into (16) to produce the
residual R. The residual function will depend on the spatial variables (x, y), the unknown
coefficients ak and the parameter λ. The goal of Boyd’s pseudospectral method is to find ak

so that the residual function R is zero at N “collocation points.” The collocation points are
usually chosen to be the roots of orthogonal polynomials that fall into the same family as the
basis functions φk(x, y). Boyd [3] uses the Gegenbauer polynomials to define the collocation
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points. The Gegenbauer polynomials [8] are orthogonal on the interval [−1, 1] with respect
to the weight function w(x) = (1 − x2)b where b = −1/2 corresponds to the Chebyshev
polynomials and b = 1 is the choice Boyd uses. The second-order Gegenbauer polynomial is

G2(x) =
3

2
(5x2 − 1), −1 ≤ x ≤ 1. (18)

Using a 1-point collocation method at the point x1 =

(
1√
5
,

1√
5

)
and the choice of

φ1(x, y) = (1−x2)(1− y2) Boyd is able to obtain an approximation to the value of λc with a
relative error of 8% [3]. Note that this choice for φ1(x, y) satisfies the boundary conditions
(2) since φ(1, y) = φ(−1, y) = φ(x,−1) = φ(x, 1) = 0.

In the rest of this section Boyd’s collocation method described above for Bratu’s problem
in planar two-dimensional coordinates (16) shall be extrapolated to solve the planar 1-
d Bratu probem (3). The most obvious difference is the change in the domain from a

square [−1, 1] × [−1, 1] to an interval [0, 1]. Using a linear transformation of z =
x + 1

2
the

Gegenbauer polynomial G2(x) defined on [−1, 1] found in (18) becomes

G2(2z − 1) = 6(1 − 5z + 5z2), 0 ≤ z ≤ 1. (19)

The corresponding collocation point to x1 becomes z1 =
1

10
(5 +

√
5) with φ1(z) = z(1 − z)

and assuming u(z) = Aφ1(z). (Note this form of φ(z) satisfies the boundary conditions that
φ(0) = φ(1) = 0.) Substituting z1 and φ1(z) into the one-dimensional planar Bratu problem
(replace x by z) produces an equation for the residual which is constrained to be zero.

R[z1; λ, A] = R[
1

10
(5 +

√
5); λ, A] = −2A + λe

1
5
A = 0 (20)

Solving (20) for λ produces
λ1(A) = 2Ae−0.2A (21)

The expression (21) attains its maximum value of λc at A = 5. Using 1-point Boyd collocation
produces an estimate of λc = 10e−1 = 3.67879441 which is 4.7% greater than the exact value
of λc = 3.513830719.

To increase accuracy the number of collocation points is increased. However, the number
of residual equations (and their complexity) will simultaneously also increase. Using 2-point
collocation the form of u(x) is assumed to be

u(z) = Aφ1(z) + Bφ2(z) = Az(1 − z) + Bz(1 − z)(2z − 1)2, 0 ≤ z ≤ 1. (22)

The above two-point collocation expansion corresponds to the expansion u(x) = A(1−x2)+
Bx2(1 − x2) which would be valid on [−1, 1]. The fourth-order Gegenbauer polynomial,
defined on [−1, 1] is

G4(x) =
15

8
(1 − 14x2 + 21x4), −1 ≤ x ≤ 1 (23)
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which on transformation to [0, 1] becomes

G4(2z − 1) = 15(1 − 14z + 56z2 − 84z3 + 42z4), 0 ≤ z ≤ 1 (24)

G4(x) has four roots on the interval [−1, 1] symmetrically distributed around the origin.
The two largest roots are selected as the collocation points for the 2-point Boyd collocation
method. The two residual equations are formed by substituting (22) into the planar Bratu
equation at the collocation points.

R
[

1

42

(
21 +

√
21(7 − 2

√
7)
)

; λ, A, B
]

= −8A − 8B +
32B√

7
+ λe

2
63

(21A+3
√

7A+5B−√
7B) = 0

R
[

1

42

(
21 +

√
21(7 + 2

√
7)
)

; λ, A, B
]

= −8A − 8B − 32B√
7

+ λe
2
63

(21A−3
√

7A+5B+
√

7B) = 0

The method of solution is to find closed-form expressions for λ and B in terms of either A.
This is not easy to do with the system as currently constituted. However by eliminating
terms in the exponentials which are significantly smaller than the other terms it turns out
that a closed form expression for λ(A) obtained from the 2-point Boyd collocation method
can be found.

λ2(A) =
64
√

7Ae
2
21

(−7+
√

7)A

−7 + 4
√

7 + (7 + 4
√

7)e
4A
3
√

7

(25)

The maximum value of the expression (25) is λc = 3.45611039, which is 1.64% smaller than
the exact value (9).

2.3 Adomian polynomial decomposition

Adomian [1] developed a “polynomial decomposition” method of representing solutions to
boundary value problems of the form

u′′ = −F (u)
u(0) = α and u(1) = β.

The exact solution to (2.3) can be represented by a Green’s Function

u(x) = λ
∫ 1

0
g(x, s)F (u(s))ds + (1 − x)α + βx (26)

where

g(x, s) =

{
s(1 − x), 0 ≤ s ≤ x
x(1 − s), x ≤ s ≤ 1.

(27)

Adomian’s decomposition method assumes that the unknown solution u(x) and the given
nonlinear functional F (u) can each be represented as infinite series.

u =
∞∑
i=0

ui = u0 + u1 + u2 + . . . (28)
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and

F (u) =
∞∑
i=0

Ai = A0 + A1 + A2 + . . . . (29)

In the case of F (u) the infinite series is a Taylor Expansion about u0. In other words

F (u) = F (u0) + F ′(u0)(u − u0) + F ′′(u0)
(u − u0)

2

2
+ F (3)(u0)

(u − u0)
3

3
+ . . . (30)

By re-writing (28) as u−u0 = u1 +u2 +u3 + . . ., substituting it into (30) and then equating
the two expressions for F (u) found in (30) and (29) defines formulas for the “Adomian
polynomials.”

F (u(s)) = A0+A1+A2+. . . = F (u0)+F ′(u0)(u1+u2+u3+. . .)+F ′′(u0)
(u1 + u2 + u3 + . . .)2

2!
+. . .

(31)
By equating terms in (31) the first few Adomian polynomials A0, A1, A2 are given...

A0 = F (u0)

A1 = u1F
′(u0)

A2 = u2
1F

′′(u0)/2! + u2F
′(u0)

A3 = u3
1F

(3)(u0)/3! + 2u1u2F
′′(u0)/2! + u3F

′(u0)

A4 = u4
1F

(4)(u0)/4! + 3u2
1u2F

(3)(u0)/3! + (2u1u3 + u2
2)F

′′(u0)/2! + u4F
′(u0)

Now that the {Ak}∞k=0 are known, (29) can be substituted in (26) to specify the terms in
the expansion for the solution (28).

u(x) = λ
∫ 1

0
g(x, s)

∞∑
i=0

Ai ds + (1 − x)α + βx

∞∑
i=0

ui = α(1 − x) + βx + λ
∞∑
i=0

∫ 1

0
g(x, s)Ai ds

Equating the terms yields

u0 = α(1 − x) + βx

u1 = λ
∫ 1

0
g(x, s)A0(s)ds

u2 = λ
∫ 1

0
g(x, s)A1(s)ds

...
...

uk = λ
∫ 1

0
g(x, s)Ak−1(s)ds

Now the {uk}∞k=0 are known, so the solution is given by u = u0 + u1 + u2 + u3 + . . ..
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To apply the Adomian polynomial decomposition method to solve the one-dimensional
planar Bratu problem (3) involves setting α = β = 0 and F (u) = eu. A happy accident is
that the kth derivative of F (u), F (k)(u) = eu so that choosing u0 = 0 greatly simplifies the
formulas for the Adomian polynomials {Ak} since eu0 = 1.

A0 = 1

A1 = u1

A2 = u2
1/2! + u2

A3 = u3
1/3! + u1u2 + u3

A4 = u4
1/4! + u2

1u2/2 + u1u3 + u2
2/2! + u4

...
...

Knowing the {Ak} terms leads to the calculation of the {uk} terms

u0 = 0

u1 = λ
∫ 1

0
g(x, s) · 1 ds = λ

∫ x

0
s(1 − x) ds + λ

∫ 1

x
x(1 − s) ds

=
1

2
(1 − x)xλ

u2 = λ
∫ 1

0
g(x, s) · 1

2
(1 − s)sλ ds

= λ2(1 − x)
∫ x

0

1

2
(1 − s)s2 ds + λ2x

∫ 1

x

1

2
(1 − s)2s ds

=
1

24
(1 − 2x2 + x3)xλ2

u3 = λ
∫ 1

0
g(x, s) · A2(s) ds

=
1

1440
(9 − 10x2 − 15x3 + 24x4 − 8x5)xλ3

u4 = λ
∫ 1

0
g(x, s) · A3(s)ds

...
...

2.4 Shooting Method

The last and probably the most obvious method used to obtain a numerical solution of
the planar Bratu problem is the nonlinear shooting method. This involves converting the
nonlinear boundary value problem (3) into a system of nonlinear initial value problems which
look like

d

dt
~y = ~f(~y), ~y(0) = ~y0,
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with the choice of ~y =




y1

y2

y3

y4


, ~f =




f1(~y)
f2(~y)
f3(~y)
f4(~y)


 =




y2

−ey1

y4

−ey3


 and ~y0 =




0
s0

0
1


.

The shooting method works by choosing a value s0 for u′(0), solving the initial value
problem (using a standard ODE solver like Runge-Kutta) and then comparing the value of
y1(b) with the expected value of u(b) = 0. A new value of sk is chosen by using Newton’s
Method, where

sk+1 = sk − y1(b) − u(b)

y3(b)
(32)

The method is said to converge when the difference between subsequent values of sk fall
below a given tolerance, in other words y1(b) is very close to u(b).

In the next section, the results of using the numerical methods detailed in this section
are given.

3 Numerical Results

The results of applying various numerical methods to produce solutions of the planar one-
dimensional Bratu problem (3) are given in this section. We shall begin with considering the
results obtained using finite differences. A comparison of the errors generated using Mickens
finite differences and standard finite differences are illustrated in Figure 3. By examining
Figure 3 it can be observed that the error due to each finite difference method decreases

proportionally to with h2 =
1

N2
. Also note that the Mickens discretization error (solid line)

is consistently smaller than the standard discretization error (dashed line). The value of the
parameter λ shall be taken to be one.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0  

0.0000005

0.000001

0.0000015

N=100 

N=200 

N=400 

Figure 3: Comparison of standard error and Mickens error for N = 100, 200, 400 and 800
when λ = 1

Interestingly, despite the fact that there are two solutions to (3) at λ = 1 as shown in
Figure 4, the standard finite difference scheme will only converge to one of them, the “lower”
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solution, i.e. the one below the λ = λc solution. The Mickens discretization will converge
to either solution, depending on the initial guess chosen for all values 0 < λ < λc. Neither
discretization method will converge to the unique solution at λ = λc.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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x

u(x)

λ=λ
c

λ=1
λ=1

Figure 4: The two solution curves for λ = 1 and the unique solution curve for λ = λc

The solution produced by Boyd’s pseudospectral method does not have the deficiency
of being unable to converge to both solutions of the Bratu problem for λ < λc which the
standard finite-difference method and Adomian decomposition method both have. Boyd’s
method is able to produce continuous expressions for λ versus the maximum value of the
solution. In Figure 5 the behavior of Boyd solutions produced using 1-point and 2-point col-
location is compared with the exact solution’s bifurcated behavior (as depicted in Figure 2),
which indicates the multivalued nature of the Boyd solutions.
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Figure 5: Dependence of Boyd pseudospectral solutions on λ

When λ = 1 there are two solutions to the Bratu problem (3), which are depicted in
Figure 4 and called the “upper” solution and the “lower” solution. In Figure 6 the results
of producing solutions using Boyd’s pseudospectral method to the Bratu problem when
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λ = 1 are depicted. The exact solution is the dark solid line, with the solution from the
1-point collocation depicted using a continuous dotted line and the solution from the 2-point
collocation depicted using a continuous solid line. Interestingly, Boyd’s method does very
well with just 1-point collocation to approximate the lower solution. The 1-point Boyd
collocation method doesn’t do a very good job of approximating the solution to the “upper”
Bratu solution, though the 2-point Boyd collocation does much better, as seen in Figure 6.
This is not a surprise, since the expectation is that using more collocation points will decrease
the error. By looking at Figure 5 it is clear that at λ = 1 the three curves (exact solution,
1-point and 2-point) are close together at the lower arc of the bifurcation curve corresponding
to the “lower solution” and they are not close together at the upper arc of the bifurcation
curve corresponding to the “upper solution.” The proximity of the curves is indicative of the
numerical error, and the error in approximating the lower solution is smaller than the error
in approximating the upper solution.
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(a) Upper solution when λ = 1
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(b) Lower solution when λ = 1

Figure 6: Comparison of Boyd solutions generated by one-point and two-point collocation

The solutions generated by the Adomian polynomial decomposition only approach the
exact solution for small values of λ ≤ 1. Like the standard discretization method, the
Adomian method’s solution only converges to the “lower” solution at λ = 1. In Figure 7 the
first three nonzero terms of the Adomian polynomial expansion (solid curves) are depicted
next to the exact solution (unconnected dotted line). Clearly, these terms (u1 + u2 + u3)
are enough to approximate the exact solution relatively accurately when λ = 1. However, if
λ = λc is selected one needs far more than three terms of the series {uk}∞k=0 to converge to
the exact solution, as can be seen in Figure 7. Deeba et. al. [7] obtained identical results
when they applied Adomian’s polynomial decomposition method to the same boundary value
problem (3).
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Figure 7: Comparison of using first three non-zero terms of Adomian polynomial solution
for λ = 1 and λ = λc

The shooting method was implemented using the Matlab routine ode45 and produces
accurate numerical solutions rapidly for values of λ < λc. The shooting method will converge
to both the upper and lower solutions depicted in Figure 4 by carefully choosing the value
of the initial slope s0 in (32). However, when λ = λc, like the finite-difference methods in
Section 2.1, the shooting method will not converge to a solution within the given tolerance.
Figure 8 depicts the numerical error produced by the nonlinear shooting method as it ap-
proximates both Bratu solutions at λ = 1. Since the numerical error of the shooting method
depends on the tolerance of the ODE solver, and not the grid separation, N was chosen to
be 100 with a RelTol of 10−10.
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Figure 8: Errors generated by the nonlinear shooting method when λ = 1 using N = 100

16



4 Conclusion

Five different methods were used to generate numerical solutions of the planar one-dimensional
Bratu problem. The five methods were, two finite-difference methods, two spectral methods
and a nonlinear shooting method. The methods were chosen for their ease of use for relative
error generated. This is why only a few terms (two in the case of the Boyd pseudospectral
method and three in the case of the Adomian polynomial decomposition) were used. Only
the Mickens discretization and the nonlinear shooting method had no difficulty handling the
bifurcated nature of the solution for subcritical values of the parameter λ. The Adomian
and Boyd methods do successfully approximate the “lower” of the multiple solutions when
the value of λ is small using very few collocation points. However to increase their accuracy
would require many more collocation points and would no longer make these “simple” meth-
ods to implement. It is worthwhile to note that the Mickens discretization method performs
as well as the nonlinear shooting method, and is also very easy to implement.
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