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A Theoretical Framework for Unsupervised 
Change Detection Based on  

Change Vector Analysis in Polar Domain 
 

F. Bovolo, IEEE Student Member, and L. Bruzzone, IEEE Senior Member  

Abstract – This paper addresses unsupervised change detection by proposing a proper 

framework for a formal definition and a theoretical study of the change vector analysis (CVA) 

technique. This framework, which is based on the representation of the CVA in polar 

coordinates, aims at: i) introducing a set of formal definitions in the polar domain (which are 

linked to the properties of the data) for a better general description (and thus understanding) 

of the information present in spectral change vectors; ii) analyzing from a theoretical point of 

view the distributions of changed and unchanged pixels in the polar domain (also according to 

possible simplifying assumptions); iii) driving the implementation of proper pre-processing 

procedures to be applied to multitemporal images on the basis of the results of the theoretical 

study on the distributions; and iv) defining a solid background for the development of 

advanced and accurate automatic change-detection algorithms in the polar domain. The 

findings derived from the theoretical analysis on the statistical models of classes have been 

validated on real multispectral and multitemporal remote sensing images according to both 

qualitative and quantitative analyses. The results obtained confirm the interest of the 

proposed framework and the validity of the related theoretical analysis. 

 

Index Terms—Change detection, change vector analysis, multitemporal images, 

unsupervised techniques, polar representation, spherical representation, statistical models, 

remote sensing. 
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I. INTRODUCTION 

Unsupervised change detection plays an important role in many application domains related to 

the exploitation of multitemporal remote sensing images. The availability of images acquired on the 

same geographical area by satellite sensors at different times makes it possible to identify and label 

possible changes occurred on the ground. In this context, in order to properly exploit the huge 

amount of data acquired by current remote sensing satellites, it is mandatory to develop effective 

unsupervised and automatic change-detection techniques. 

Several unsupervised change-detection methodologies have been proposed in the literature [1]-

[3]. Among them, a widely used technique is the change vector analysis (CVA). CVA is typically 

applied to multispectral images acquired by passive sensors, by considering more than one spectral 

channel in order to exploit all the available information about the considered event of change. 

However, usually CVA is used in an empirical way, without referring to a specific theoretical 

framework capable to properly and formally represent all the information contained in the spectral 

change vectors (SCVs) obtained by subtracting corresponding spectral bands of two images 

acquired at different dates. In addition, in the most of the applications, only the magnitude of the 

SCVs is exploited in order to identify changed pixels. Only in few applications also the direction of 

the vector is empirically used for deriving information on the kind of change occurred on the ground 

[4]-[13]. This lack of a formal framework and of a proper analysis of the statistics of data results in 

sub-optimal applications of the CVA or, in some cases, in a non-complete understanding of the 

richness of the information present in SCVs. This involves an incomplete exploitation of all the 

available information and/or the definition of change-detection algorithms which are not based on a 

solid theoretical background and on proper analysis procedures. 

In order to address the aforementioned problems, in this paper we present a consistent theoretical 

framework for a proper representation, modeling and exploitation of the information present in the 

SCVs computed according to the CVA technique. The proposed framework and the related analysis 
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are carried out in the context of a Polar representation of the CVA. In particular, the proposed novel 

contributions of this paper consist in: i) the introduction of formal definitions for a proper 

characterization of the information present in the polar CVA technique; ii) a theoretical analysis on 

the distributions of changed and unchanged pixels in the Polar domain under both general 

conditions and proper simplifying assumptions; iii) the introduction of proper guidelines for 

defining effective pre-processing strategies based on the expected properties of the theoretical 

distributions of changed and unchanged pixels; iv) the definition of a solid background for the 

development of advanced and accurate automatic change-detection algorithms in the Polar domain. 

A validation of the theoretical analysis, carried out on real multispectral and multitemporal remote 

sensing images, is reported. 

The paper is organized into six sections. The next section introduces the change-detection 

problem and the formulation of the CVA technique in both Cartesian and Hyperspherical domains. 

Section III gives some basics on the models for joint conditional class distributions in both 

Cartesian and Polar coordinate systems. Section IV presents the proposed theoretical analysis on 

the models of marginal conditional distributions of magnitude and direction; furthermore, it 

proposes a critical analysis on the importance and the effects of image pre-processing procedures 

(e.g., radiometric corrections, coregistration, etc.) on the data distributions. The validation of the 

proposed theoretical analysis, carried out on real multitemporal and multispectral remote sensing 

data, is reported in section V. Finally, Section VI discusses the obtained results and draws the 

conclusions of this paper. 

II. PROPOSED POLAR REPRESENTATION FRAMEWORK FOR CVA 

A. Background and CVA Formulation 

Let us consider two coregistered multispectral images, 1X  and 2X , of size JI ⋅ , acquired over the 

same area at different times t1 and t2. Let 1X  and 2X  be two multidimensional random variables that 

represent the statistical distributions of pixels in images 1X  and 2X , respectively. Let Xb,t be the 



  

6 

random variable representing the b-th component of the multispectral image tX  (t = 1, 2) in the 

considered feature space. Let { , }= ωnΩ Ωc  be the set of classes of unchanged and changed pixels to 

be identified. In greater detail, ωn  represents the class of unchanged pixels and }ω,...,ω{
K1 cc=cΩ  

the set of the K possible classes (kinds) of change occurred in the considered area. 

The first step of the most widely used change-detection techniques presented in the literature 

performs comparison between the two considered images according to a proper operator [1]. When 

dealing with multispectral images, the most widely used comparison operator is the difference. In 

many cases difference is applied to a n-dimensional feature space in order to give as input to the 

change-detection process all the relevant spectral information. This technique is known as change 

vector analysis (CVA) [1],[5] and has been successfully used in many different application domains 

[4]-[13]1. CVA firstly computes a multispectral difference image ( X D ) subtracting the spectral 

feature vectors associated with each corresponding spatial position in the two considered images 1X  

and 2X . Let DX  be the multidimensional random variable representing the spectral change vectors 

(SCVs) in the difference image obtained as follows [1]: 

2 1X = X - XD . (1)

Each SCV is usually implicitly represented in Polar coordinates with its magnitude and direction. 

Although the direction of the SCVs is rich of information (e.g., on the kind of changes occurred on 

the ground and on the distribution of registration noise), in the most of the applications it is not 

considered. Among the few studies reported in the literature where magnitude and direction 

expressed as cosine functions are considered together for change detection, we recall [5]-[13]. In 

1980, Malila [5] first formulated the concept of change vector and then used both magnitude and 

direction in a two dimensional space for identifying changes due to plants clearcut and regrowth in 

the northern Idaho (U.S.) forest. In [5]-[8] the direction variable was subdivided in a fixed number 

of sectors, each of them corresponding to positive or negative changes in one of the B considered 
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features (i.e., spectral channels or linear combinations of them, like Tasseled-Cap transformation). 

This kind of quantization leads to the definition of a maximum of 2B sectors and hence of types of 

changes. The major drawback of this approach is that different kinds of changes could assume the 

same sector code. In [9], the CVA sector coding approach was extended to the solution of 

multivariate, full-dimensional and also multi-interval problems (i.e., applications involving more 

than two acquisition dates). In [10], Allen and Kupfer introduced in the CVA technique the use of 

direction cosines for the description of SCV directions. They applied a hierarchical linear 

discriminant analysis for testing predictive power of magnitude and vector angles in solving change-

detection problems. Direction cosines were used also in [11] and [12]. In these works authors firstly 

identified changed pixels on the basis of magnitude values, then image classification algorithms 

were applied to direction cosines for discriminating the different kinds of change. In [13], authors 

defined a modified CVA (mCVA) technique where Polar coordinates are transformed back into a 

Cartesian coordinate system to overcome discontinuity between 0 and 2π and different kinds of 

changes are then detected applying either supervised or unsupervised clustering algorithms in the 

defined domain. A different approach to the use of the direction information has been presented in 

[4], where the authors proposed a method for estimating and reducing the registration noise. The 

method is based on a joint exploitation of the magnitude and direction components. However, the 

most of the analyses reported in the literature have been carried out in an empirical way as well as 

without a rigorous statistical information class characterization and without referring to a proper 

theoretical framework for completely understanding and processing the information present in 

SCVs. 

In this paper, in order to fill the aforementioned gaps in the current CVA formulation and to 

provide a solid background to improve the efficiency of the CVA technique in real data analysis, we 

propose a rigorous framework characterized by proper formal definitions for data representation in a 

 
1  The particular case of working with a single feature reduces the CVA to the univariate image differencing technique 

[1]. 
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Polar coordinate system. In addition, we peresent a theoretical analysis of the data distributions in 

the Polar domain and derive from this analysis interesting properties of the SCVs, which are very 

useful for driving both the pre-processing procedure to be applied to multitemporal data and the 

definition of effective change-detection algorithms. 

B. General Framework for Hyperspherical Representation 

Given a B-dimensional feature space, the SCV associated with a pixel of the analyzed scene can 

be described with its magnitude value and B-1 directions. In this work, we propose to represent the 

properties of the SCVs, instead of using a Cartesian coordinate system, by plotting SCVs in a B-

dimensional Hyperspherical coordinate system2. Thus the multidimensional random variable XD can 

be represented with a random variable ρ that models the statistical distribution of the change vector 

magnitude and B-1 random variables [ 1ϑ , 2ϑ ,..., 1−Bϑ ] that represent the distribution of the change 

vector angular coordinates. It is worth noting that changing the coordinate system has a dramatic 

impact on the statistical distributions of the considered classes. This aspect will be analyzed in the 

next section. 

Let D,X 1 , …, DB,X  be the random variables representing the distributions of SCVs along the B 

dimensions (spectral channels) of the considered Cartesian coordinate system; then, the relations 

between the random variables modeling SCVs in the Cartesian and the Hyperspherical coordinates 

are the following: 

1, 1

2, 1 2

3, 1 2 3

, 1 2 1

cos
 sen cos
 sen  sen cos

....
 sen  ... sen cos

D

D

D

B D B B

X ρ
X ρ
X ρ

X ρ

ϑ
ϑ ϑ
ϑ ϑ ϑ

ϑ ϑ ϑ− −

=
=
=

=

 (2)

where  1 [0,2 )ϑ π∈  and ],0[,..., 12 πϑϑ ∈−B . 

In the following, for simplicity, we will assume that the CVA technique is applied only to two 

 
2  In the particular case of B=2 the Hyperspherical coordinate system is said Polar coordinate system. 
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spectral channels of the considered multitemporal images, i.e., that a two-dimensional coordinate 

system is sufficient to completely describe SCVs. However, the analysis can be generalized to the 

case of more spectral channels by considering more direction contributions for describing each 

SCV. It is worth noting that the assumption of working with a couple of spectral channels is 

reasonable in many change detection problems [14]-[16]. This choice is often due to the need of 

isolating the most informative features with respect to the specific considered problem without 

including noisy and misleading spectral channels in the analysis. In the above assumption, in the 

Cartesian coordinate system only random variables X1,D and X2,D are necessary to describe SCVs, 

whereas in the Polar coordinate system random variables representing the magnitude ρ  and one 

direction )(  1ϑϑ ≡  are required for each SCV. The relation between Cartesian and Polar 

representation of the difference image is as follows: 

1,1

2,

2 2
1, 2,

tan

( ) ( )  .

ϑ −⎧ ⎛ ⎞= ⎜ ⎟⎪ ⎝ ⎠⎨
⎪ = +⎩

D

D

D D

X
X

ρ X X

 (3)

C. Proposed Polar framework for the CVA technique: definitions 

In this section we propose a rigorous characterization of the Polar framework for the CVA 

technique. First of all, observe that in the Polar representation, all the change vectors of a given 

scene are included in a domain D defined as (see Fig. 1): 

{ }),20[ and  ]ρ,0[ πϑ ∈∈= maxρD  (4)

where ρmax is the maximum value assumed by the magnitude on the considered image, i.e., 

{ }2 2
1, 2,max ( ) ( )= +max D Dρ X X . (5)

According to the given definition of D, in order to establish a clear framework for CVA, we propose 

to identify different regions in the magnitude-direction domain for pointing out the information 

present in SCVs. From the definition in (4) and following consideration in [16], we expect that 

unchanged pixels have magnitude close to zero (often not exactly zero due to the presence of noise 
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components), while changed pixels have magnitude far from zero. Consequently it is possible to 

identify two different regions associated with: i) unchanged and ii) changed pixels. Thus the Polar 

domain can be split into two parts: i) circle Cn of no-changed pixels; and ii) annulus Ac of changed 

pixels. This can be done according to the optimal (in the sense of the theoretical Bayesian decision 

theory) threshold value T that separates pixels belonging to ωn  from pixel belonging to cΩ  (dark 

gray and light gray areas in Fig. 1, respectively). 

 

Definition 1: the Circle of unchanged pixels Cn is defined as 

{ }πϑϑ 20  and  0: <≤<≤= Tρρ,Cn . (6)

Cn can be represented in the Polar domain as a circle with radius T. From this definition we can 

state that for the generic pixel (spatial position) (i,j), it holds that: 

( )     ( )n ni, j i, j C∈ω ⇔ ∈  (7)

or in other words: 

( )     ( )ni, j ρ i, j T∈ω ⇔ < . (8)

This means that all the unchanged pixels satisfy (7) [or equivalently (8)] and are included in Cn. 

 

Definition 2: the Annulus of changed pixels Ac is defined as: 

{ }: ρ   and  0 2c maxA ρ, T ρϑ ϑ π= ≤ ≤ ≤ < . (9)

Ac can be represented in the Polar domain as a ring with inner radius T and outer radius ρmax. From 

this definition we can state that for the generic spatial position (i,j), it holds that: 

( ) Ω     ( )c ci, j i, j A∈ ⇔ ∈  (10)

or in other words: 

( ) Ω     ( ) ρc maxi, j T ρ i, j∈ ⇔ ≤ ≤ . (11)

This means that all the changed pixels satisfy (10) [or equivalently (11)] and are included in Ac. 

According to the above definitions, the Polar domain can be described as the union of Ac and Cn, 
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i.e., 

c nD A C= ∪ . (12)

In real applications, often the pixels with magnitude close to the optimal (in the sense of the 

theoretical Bayesian decision theory) threshold value T can not be accurately labeled according to a 

simple thresholding procedure due to the intrinsic uncertainty present in the data. In these cases, by 

taking into account that the spatial autocorrelation function of the images is not impulsive (i.e., 

pixels are spatially correlated)3, it is possible to support the decision process according to a context-

sensitive analysis of the investigated pixel [16]. This analysis is aimed at exploiting the spatial 

correlation as an additional information source in the decision process. In order to model and 

represent this uncertainty in the proposed framework, we can define a third (optional) region, i.e., 

the annulus Au of uncertain pixels. In Fig. 1 this region is depicted as a hatched annulus that 

partially overlaps both Cn and Ac. 

 

Definition 3: the Annulus Au of uncertain pixels is defined as: 

{ }:    and  0 2uA ρ, T ρ Tϑ α α ϑ π= − ≤ ≤ + ≤ <  (13)

where α is a parameter that defines the margin around T in which pixels cannot be easily identified 

as either changed or unchanged. Au can be represented in the Polar domain as a ring with inner 

radius T-α and outer radius T+α. From this definition, we can state that: 

( )      ( )ui, j A T ρ i, j Tα α∈ ⇔ − ≤ ≤ + . (14)

This means that all the uncertain pixels satisfying (14) are included in Au. The use of this definition 

depends on the specific data analysis strategy (if no contextual information is considered, it is 

assumed that α = 0 and consequently uA = ∅ ). 

 

The previous definitions have been based on the values of the magnitude, independently on the 
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direction variable. A further important definition is related to sectors in the Polar domain, which are 

mainly related to the direction of the change vectors and therefore to the kinds of change occurred 

on the ground. 

 

Figure 1 Representation of the regions of interest for the CVA technique in the Polar coordinate system. 
 

Definition 4: the Annular sector Sk of change ω kc ∈Ωc  is defined as: 

{ }1 2 1 2, :   and  ,  0 2k k k k kS ρ ρ Tϑ ϑ ϑ ϑ ϑ ϑ π= ≥ ≤ < ≤ < < . (15)

Sk can be represented in the Polar domain as a sector of change within the annulus of changed pixels 

[see (9)] and bounded from two angular thresholds 
lkϑ  and 

2kϑ  (see Fig. 1). We expect that pixels 

that belong to the same kind of change are included in the same sector4. In the Polar coordinate 

system, two angular coordinates identify two sectors: i) a convex sector, and ii) a concave sector. As 

it is reasonable to expect that pixels belonging to the same change class have a low variance, 

generally the sector we are interested to is the convex one. It is worth noting that this condition is no 

longer satisfied if the convex sector covers the discontinuity between 0 and π2 . In this case the 

variance of the changed pixels is high and the relation between the two angular coordinates is 

inverted, i.e., 
21 kk ϑϑ > ; thus, the definition of Sk becomes: 

 
3 This is true under the reasonable assumption that the geometrical resolution of the considered multispectral sensor is 

proper for the analyzed scene. 
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{ }π<ϑ<ϑ≤ϑ<ϑ≤∪π<ϑ≤ϑ≥ϑ= 20   ,02  and  :, 2121 kkkkk TρρS . (16)

Fig. 1 depicts an example of annular sector as a hatched sector of annulus that overlaps region Ac 

between angular coordinates 
lkϑ  and 

2kϑ . 

III. ANALYSIS OF THE JOINT CONDITIONAL DISTRIBUTIONS OF CLASSES 

The definition of the different regions of interest in the Polar domain allows a better 

representation of the change-detection problem and drives to the analysis of another important 

problem that concerns the expected distribution of classes of interest in the change-detection 

problem. 

A. Class distributions in the Cartesian domain 

As known from the literature [17], the statistical distribution of natural classes in images 

acquired by multispectral passive sensors can be considered approximately Gaussian. Thus, both 

multidimensional random variables 1X  and 2X  can be modeled as a mixture of multidimensional 

Gaussian distributions in the Cartesian domain. As DX  is obtained subtracting 1X  from 2X , its 

distribution can be also reasonably represented as a mixture of multidimensional Gaussian 

distributions, each of them associated with a class ωi , { } { }1, , ,..., Ki n c n c cω ∈ = ω = ω ω ωΩ  Ω : 

∑
=

ω+ω=+ω=
K

k
cncn kDDDDD XXXXX PPPPp

1
)|()()()()( ||| Ω  (17)

where )|( iDXP ω  is a normal conditional density that models the distribution of the class iω  in the 

multivariate difference image. As classes in DX  can be approximated as jointly Gaussian 

distributed, it is possible to show that all the components b,DX , obtained subtracting corresponding 

spectral bands (b=1,2), are also a mixture of normally distributed random variables. This 

consideration and the assumption in (17) are the starting point for analyzing the statistical 

distributions of the no-change class and of the K classes of change in the Polar domain. 

 
4  It is worth noting that sectors associated with different kinds of change are not overlapped. 
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B. Class distributions in the Polar domain 

From (17), it can be seen that the analytical expression of class distributions in the Polar 

domain can be obtained by computing the joint conditional probability density functions of the 

magnitude and direction of SCVs [see (3)] of the 2-dimensional random variable DX . A simplifying 

hypothesis is to consider features D,X 1  and D,X 2  as independent (see section IV.C for a detailed 

discussion on this hypothesis). Under this assumption, the distribution of the class ωi  ( Ω∈ωi ) in a 

Cartesian coordinate system can be written as the product of the two marginal densities ( | )ωb,D iP X  

of the class ωi  (b=1,2), i.e., 

2 21, 1 2, 2
2 2

1 2 1 2
   ( ) ( )1( ) exp 2 22

D ,i D ,i
D i

,i ,i ,i ,i

X XP X | µ µ
σ σπσ σ

⎡ ⎤− −⎢ ⎥− −
⎢ ⎥⎣ ⎦

ω =  (18)

where ,b iµ  and ,b iσ  are the mean values and the standard deviations, respectively, of the Gaussian 

distributed marginal density of class ωi  over the b-th considered feature (b=1,2). Applying the 

transformation from Cartesian to Polar coordinate system, the joint conditional distribution can be 

written as: 

2 2
1, 2,

2 2
1, 2, 1, 2,

(  cos ) (  sen )1( | ) exp2 2 2
i i

i
i i i i

P , ρ ϑ µ ρ ϑ µρ ϑ πσ σ σ σ
− −⎡ ⎤ω = − −⎢ ⎥⎣ ⎦

. (19)

According to this general equation (which is the starting point for the statistical analysis reported in 

the next section) we can define the quantities typically used for evaluating the performance of 

change-detection algorithms (i.e., false alarms and missed alarms) in the context of the proposed 

framework. Let us define the following decision regions: 

i) the region of changed pixels (Rc) that corresponds to the union of all identified non-

overlapping annular sectors Sk (k = 1,…, K): ∪
K

k
kc SR

1=
= ; 

ii) the region of no-changed pixels (Rn) that corresponds to the union of circle of no-change Cn 

and the region 
1

K

c k
k

A S
=

−∪  complementary to the region of changed pixels with respect to 
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Ac, i.e. 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−=
=
∪∪
K

k
kcnn SACR

1
. 

Given these decision regions and the joint conditional distributions for the classes of change and no-

change in (19), it is possible to analytically define the false and missed alarms. 

False alarms occur when unchanged pixels are identified as changed. The probability of this 

kind of error Pf can be written as the integral of the joint conditional probability density function 

given the class of no-change over the region of changed pixels, i.e. 

( | )   
c

f n

R

P P , d dρ ϑ ρ ϑ= ω∫ . (20)

Missed alarms occur when changed pixels are identified as unchanged. The probability of this 

kind of error Pm can be written as the sum of the K integrals (one for each class of change kcω ) of 

the joint conditional probability density function given the class kcω  of change over the region 

associated to unchanged pixels, i.e. 

1

( | )   k

n

K

m c

Rk

P P , d dρ ϑ ρ ϑ
=

= ω∫∑ . (21)

IV. ANALYSIS OF THE MARGINAL CONDITIONAL DISTRIBUTIONS OF MAGNITUDE AND DIRECTION 

The joint conditional probability in (19) is too general to be efficiently used in solving change-

detection problems. A more suitable way to approach the problem is to compute the marginal 

conditional densities of the magnitude ρ and the direction ϑ . Starting from (19), these two densities 

can be computed for each class ωi by integrating (19) over the range of ϑ  and ρ, respectively. 

Let us first consider the marginal conditional density of the magnitude ( | )ip ρ ω . Integrating (19) 

over the range of ϑ  leads to the following equation: 

2,1,
2 2
1, 2,

2
2 2

1, 2, 0

(  cos ) (  sen )exp    d
2 2

( )
2

ii

i i
i

i i

ρ
p ρ |

π
ρ ϑ µ ρ ϑ µ ϑ

σ σπσ σ

⎡ ⎤− −
− −⎢ ⎥

⎢ ⎥⎣ ⎦
ω = ∫ . (22)

This integral can not be expressed in a closed form, but it can be reduced to an infinite series of 
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Bessel functions. By following [18], it is possible to show that ( )ωip ρ |  can be written as: 

2 2
2

1, 2, 0
( ) ( ) cos 2  arctan( ) exp( ) ( 1)

σ σ

∞
⎛ ⎞

ε + ⎜ ⎟
⎝ ⎠

ω = − −∑ p
i p p p

i i p=

RI P I Q R p Q
ρp ρ | D , 0≥ρ  (23)

where Ip(z) is the p-th order modified Bessel function of the first kind defined as: 

2

1I ( ) exp(  cos( ) ) 2

π

π

+

= − +∫
C

p

C

z z u ipu du  (24)

where C is a constant, i is the imaginary unit, and D, P, Q and R are defined as follows: 

2 2 2 2 2
1, 2, 2, 1, 2

2 2 2 2
1, 2, 1, 2,2 2 4

µ µ ρ σ σ ρ
σ σ σ σ

+ −
= + +i i i i

i i i i
D ,     

2 2
2, 1, 2

2 2
1, 2,4

σ σ ρ
σ σ

−
= i i

i i
P ,     1,

2
1,

µ ρ
σ

= i

i
Q ,     2,

2
2,

µ ρ
σ

= i

i
R . (25)

The marginal conditional density of the direction ( )ϑ ωip |  can be obtained by integrating (19) over 

the range of ρ. The integral can be written in a closed form. It is possible to prove that after some 

handling we obtain: 

( )22 22 2 2 22 2, 1, 1, 2,2, 1, 1, 2,
2 2 2 2 2 2 22 2 2 3 1, 2, 1, 2, 1, 2,1, 2,

2,2 2
2, 1, 1, 2,

tan( )(1 tan ( ))( ) exp 2 exp
2 2 ( tan ( ) )4 ( tan ( ) )

( tan( ) ) 1 erf

i i i ii i i i
i

i i i i i ii i

i
i i i i

µ µµ µp |

µµ µ

σ ϑ σσ σϑϑ π
σ σ σ σ σ ϑ σπ σ ϑ σ

σ ϑ σ

⎧ ⎡ ⎛ ⎞+⎛ ⎞++ ⎪ ⎢ ⎜ ⎟ω = − −⎨ ⎜ ⎟ +⎢ ⎜ ⎟+ ⎝ ⎠⎪ ⎝ ⎠⎣⎩

+ +
2 2
1, 1, 2, 2 2 2

1, 2, 1, 2,
2 2 2

1, 2, 1, 2,

tan( ) 2 ( tan ( ) )  ,
2( tan ( ) )
i i i

i i i i
i i i i

µσ ϑ σ σ σ σ ϑ σ
σ σ σ ϑ σ

⎫⎤⎡ ⎤⎛ ⎞+ ⎪⎥⎢ ⎥⎜ ⎟ + + ⎬⎜ ⎟ ⎥⎢ ⎥+ ⎪⎝ ⎠⎣ ⎦ ⎦⎭
[0, 2 )ϑ π∈ . (26)

Figs. 3 and 4 show examples of the behaviors of the magnitude and direction marginal 

conditional densities versus the mean values ( 1,iµ , 2,iµ ) and the standard deviations ( 1,iσ , 2,iσ ), 

respectively, of the class ωi  characterized by a Gaussian distribution in the Cartesian coordinate 

system. It is worth noting that the periodicity of the direction distribution depends on the period of 

the tangent function; in real applications the proper maximum should be selected according to the 

data distribution. 

As can be seen, (23) and (26) represent two complex mathematical expressions. In real 

applications, usually additional hypotheses can be made in order to simplify the analytical 

expressions of the probability density functions. In the change-detection problem, different 

assumptions can be formulated for the classes of changed and unchanged pixels. In the following, 
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the cases related to the two classes of interest will be addressed separately and in greater detail. 

(a) (b) 

Figure 2 Examples of conditional distributions of the magnitude: (a) with respect to different values of iµ2,  

( iµ1,  = 5, i1,σ  = i2,σ  =10); and (b) with respect to different values of i2,σ  ( iµ1,  = iµ2,  = 5 and i1,σ  
=10). 

 
 
 

(a) (b) 
 
Figure 3 Examples of conditional distributions of the direction: (a) with respect to different values of iµ2,  ( iµ1,  

= 5, i1,σ  = i2,σ  = 10) and in the particular case of iµ1,  = iµ2,  =0 that leads to the Uniform distribution; 

and (b) with respect to different values of i2,σ  ( iµ1,  = iµ2,  = 5 and i1,σ =10). 
 
 
 

A. Statistical models for the class of unchanged pixels 

As stated in section III.B, we assume that images X1 and X2 have been coregistered [19],[20] 

and that possible differences in the light and atmospheric conditions at the two times have been 
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corrected [21]5. Under these hypotheses, we can reasonably assume that in unchanged areas natural 

classes do not significantly change their distributions between the two acquisition dates. This 

simplifies the computation of distributions in the Polar domain as we can write: 

1, 2, 0ω ω≅ ≈n nµ µ  (27)

1, 2,σ σ σω ω ω≅ =n n n . (28)

Substituting both expressions (27) and (28) into (22) and solving the integral, we get for the 

magnitude random variable the following probability density function: 

2

2 2
( ) exp

2σ σω ω

⎛ ⎞
ω = −⎜ ⎟

⎝ ⎠n n

n
ρ ρp ρ | , 0≥ρ  (29)

which is commonly known as the Rayleigh distribution. 

Concerning the statistical distribution of the direction variable for the class of unchanged pixels, 

it can be obtained substituting (27) and (28) into (26) i.e., 

1( ) ,    [0, 2 )
2np |ϑ ϑ π
π

ω = ∈  (30)

This means that the statistical distribution of the direction is Uniform within [0, 2 )π . 

B. Statistical models for the classes of changed pixels 

The analytical study of the distribution of the generic class ω kc  , kc cω ∈Ω , (for simplicity of 

notation in the following ω kc  will be indicated as ωk ) of changed pixels is more complex than the 

one carried out for the class of unchanged pixels. In this case, assumption (27) is no further valid, as 

changes in land-cover types modify the mean values of the natural classes in different ways in 

different spectral channels (this depends on the kind of change). This leads to the following 

condition: 

1 2, , 0k kµ µω ω≠ ≠ . (31)

It is worth noting that if 1, 2,k kµ µω ω=  or they are both equal to 0 the analysis of the distribution is 

 
5  This assumption will be discussed in section IV.C. 
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simplified. In order to further simplify the computation of the magnitude and direction statistical 

distributions, we can assume that: 

1 2,,σ σ σk k kω ω ω≈ = . (32)

In some applications this assumption is reasonable, but its validity should be verified for any 

specific case considered6. Thus, rewriting (22) according to (31) and (32) and solving the integral, it 

is possible to show that the random variable representing the magnitude is Ricean distributed, with 

probability density function given by: 

2 2

02 2 2

 ( ) exp  I
2

k k

k k k

k
ρ ρ M ρMp ρ |

σ σ σ
ω ω

ω ω ω

⎛ ⎞ ⎛ ⎞+
ω = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
, 0≥ρ  (33)

where I0(.) is the modified zeroth-order Bessel function of the first kind [see (24)] and ω kM  the 

non-centrality parameter of the class of change kω : 

2 2
1, 1,ω ω ω= +k k kM µ µ . (34)

It is worth noting that as ω kM  becomes much larger than the standard deviation σωk , then the 

Ricean distribution tends to become Gaussian. 

Concerning the equation of the direction of the class of changed pixels kω , it is possible to 

prove that, in the aforementioned assumptions, (26) can be simplified leading to the following Non-

uniform distribution: 

( )

2 2 2 2
2, 1, 2, 1,

2 2

2
2, 1, 2, 1,

2 2

tan( )1 1( ) exp 22 2 2 (1 tan ( ))

tan( ) tan( )exp 1 erf ,    [0,2 ) .
2 (1 tan ( )) 2(1 tan ( ))

k k k k

k k

k k k k

k k

k
µ µ µ µp |

µ µ µ µ

ω

ϑϑ πσ σ π ϑ

ϑ ϑ ϑ π
σ ϑ σ ϑ

ω ω ω ω

ω

ω ω ω ω

ω ω

⎧⎛ ⎞+ +⎪ω = − +⎨⎜ ⎟
+⎝ ⎠⎪⎩

⎫⎛ ⎞ ⎡ ⎤⎛ ⎞+ + ⎪⎜ ⎟ ⎢ ⎥− + − ∈⎜ ⎟ ⎬⎜ ⎟+⎜ ⎟ ⎢ ⎥+ ⎪⎝ ⎠⎣ ⎦⎝ ⎠ ⎭

 (35)

C. Discussion 

In the previous sub-sections, we analyzed the statistical models more suitable to represent class 

 
6  If the assumption is not verified, the general equations (23) and (26) should be used for modeling the statistical 

distributions of magnitude and direction, respectively, or a proper pre-processing should be applied to the data 
before using the simplified model (see section IV.C). 



  

20 

distributions in the Polar domain in the general case and in some simplifying assumptions. Since the 

use of simplified models is of great importance for the development of effective and adequately 

complex automatic change-detection techniques, in this section we report a critical discussion on the 

assumptions considered for modeling the distributions of the classes of changed and unchanged 

pixels. In addition, we analyze practical implications of the theoretical analysis, in order to suggest 

criteria for driving the definition of proper pre-processing techniques for an effective data 

representation. Table I reports a summary of the theoretical statistical distributions derived (under 

simplifying assumptions) in subsections IV.A and IV.B for magnitude and direction of change and 

no-change classes. 

TABLE I 

SUMMARY OF THE THEORETICAL MARGINAL CONDITIONAL DISTRIBUTIONS OF MAGNITUDE AND DIRECTION FOR 
THE CHANGE AND NO-CHANGE CLASSES UNDER SIMPLIFYING ASSUMPTIONS. 

 
Conditional distribution 

Class Magnitude ( ρ ) Direction ( ϑ ) 

Unchanged pixels ( ωn ) Rayleigh Uniform 
Changed pixels ( ωk ) Rice Non-Uniform 

 

First of all, it is important to point out that a hypothesis at the basis of the theoretical analysis 

reported in the previous sub-sections consists in assuming independence among features describing 

SCVs in the Cartesian domain. The validity of this assumption depends on the considered images 

and applications, as well as on the investigated spectral channels. Significant deviations from this 

assumption affect the precision of the analytical distributions derived for describing the behaviors of 

changed and unchanged pixels. Nonetheless, if for a generic dataset the aforementioned assumption 

is not reasonable, it is possible to transform data from the original feature space to a transformed 

domain, in which features can be approximately modeled as independent. This can be obtained by 

applying a principal component transformation (PCT) to the features characterizing the SCVs [22]. 

In this way, at the cost of an additional transformation applied to the data, it is possible to properly 

adopt the analytical models described in sections IV.A and IV.B in the development of change-
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detection techniques7. 

The aforementioned assumption is at the basis of the presented theoretical analysis. All the 

other assumptions (discussed in the following) allow only to simplify the statistical distributions 

with respect to the general models in (23) and (26), which can be included in automatic techniques 

for operational change-detection algorithms, but are rather complex. For this reason, in the 

following we analyze the simplifying assumptions in greater detail and discuss possible pre-

processing procedures aimed at transforming data so that these assumptions hold. 

An important hypothesis that deserves to be discussed concerns the assumption that different 

features in the Cartesian SCV domain have similar standard deviations. The validity of the 

assumption in the original feature space depends on the considered images and applications, as well 

as on the investigated spectral channels. However, as for the assumption of the independence, if this 

approximation is not acceptable for the considered dataset, it is possible to transform the original 

feature space according to a procedure of diagonalization and whitening [22] and to apply change-

detection algorithms to the transformed space. 

A further relevant assumption to be analyzed for the class of unchanged pixels consists in the 

hypothesis that the mean vector components of the SCVs are equal to zero. This assumption is 

verified if the images are radiometrically corrected, so that the mean vectors are the same at the two 

dates (this condition can be always satisfied according to proper pre-processing strategies). Under 

this assumption we obtain that the magnitude has a Rayleigh distribution and the direction has a 

Uniform distribution. However, in some practical cases images are not radiometrically corrected and 

pre-processing procedures for matching the light conditions are neglected. According to the 

presented theoretical analysis, this may result in two main very critical effects: i) a possible increase 

of the overlapping of the classes of unchanged and changed pixels in the magnitude domain; ii) a 

strong deviation of the conditional distribution of the direction of unchanged pixels from the 

 
7 It is worth noting that the PCT guarantees independence of features on the basis of the global distributions of 

patterns in the feature space. This means that after transformation the feature independence on the classes of 
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expected Uniform model. The first effect is due to the fact that, although differences in light 

conditions result in a bias common to all classes in the Cartesian domain, when the non-linear 

magnitude operator is applied, the bias may result in an increase of overlapping between classes 

(this behavior will be shown in the experimental analysis reported in Section V.A). The second 

effect results from the observation that if the mean-value components of the SCVs are different from 

zero, the direction distribution of the class of unchanged pixels is no longer Uniform, but assumes a 

completely different behavior, which should be modeled with equation (35) (see Fig. 3). This has a 

dramatic impact on the data processing strategy, as it completely changes the distribution of the 

direction with respect to what expected in the ideal case. This observation confirms the importance 

of the radiometric correction step in the CVA technique, highlighting the critical effects of 

neglecting this step on the distributions of unchanged pixels. 

Finally, another important implication derived from the theoretical analysis concerns the 

behavior of the distributions of the direction for the unchanged and changed classes, which are 

Uniform and Non-uniform, respectively. This means that it is possible to exploit the direction 

information (and in particular the modes associated to it for each changed class) for reducing the 

effects of the residual sources of noise present in the pre-processed multitemporal images (e.g. the 

registration noise, as it will be shown in the experimental analysis reported in Section V.A). This 

confirms from a formal theoretical point of view the analysis carried out in [4], where the direction 

information was used for identifying, modeling and reducing registration noise. 

V. EXPERIMENTAL RESULTS 

In order to assess the effectiveness of the proposed CVA framework, a number of experiments 

were carried out on a dataset made up of two multispectral images acquired by the Thematic Mapper 

(TM) multispectral sensor of the Landsat 5 satellite in the Island of Sardinia (Italy) in September 

1995 (t1) and July 1996 (t2). The area selected for the experiments is a section (412×300 pixels) of 

 
changed and unchanged pixels can be assumed only in an approximate way. 
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the two scenes acquired by the TM sensor including Lake Mulargia. As an example of the images 

used in the experiments, Figs. 4 (a) and (b) show channel 4 of the September and July images, 

respectively. 

  
(a) (b) 

 
(c) 

Figure 4 Images of the Lake Mulargia (Italy) used in the experiments. (a) Channel 4 of the Landsat-5 TM image 
acquired in September 1995; (b) Channel 4 of the Landsat-5 TM image acquired in July 1996; (c) 
available reference map of changed areas. 

 

Between the two acquisition dates only one kind of change occurred in the investigated area 

which is related to the extension of water in the lake. The multitemporal images were coregistered 

and radiometrically corrected. A reference map of the analyzed site is available, where 7480 

changed pixels and 116120 unchanged pixels are identified (see Fig. 4 (c)). This information is used 

for both computing the parameters of the statistical distributions for the classes of interest and 

evaluating the performances in terms of false and missed alarms of the change-detection process 

carried out by using the proposed statistical models. 

The considered change-detection problem is relatively simple and thus it is suitable for a proper 
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understanding of the properties and potentialities of the proposed framework. In this particular 

single-change problem, we define }ω{}ω{
1 cc ==cΩ . In the experiments, we considered only the two 

spectral channels 4 and 7 of the TM, i.e. the near and the middle infrared, as they are the most 

reliable for detecting changed areas. For simplicity of notation, in the following these channels will 

be referred with subscripts 1 and 2, respectively. 

In order to assess the effectiveness of the proposed theoretical framework for analyzing and 

extracting SCV information, three different experiments have been carried out. 

In the first experiment, a qualitative analysis of the true distributions of data in the Polar 

domain versus different pre-processing applied to the images is carried out. This experiment is 

aimed at pointing out the effects of the pre-processing procedures on both the data distributions and 

the precision of the models introduced in section IV for data representation. 

The second experiment is aimed at validating the accuracy of the theoretical models of 

distributions presented in section IV in fitting the true data distributions for both the magnitude and 

the direction, under the simplifying assumptions introduced in sections IV.A and IV.B. 

Furthermore, the goodness-to-fit of the Rayleigh and Rice distributions adopted for the magnitude of 

the change and no-change classes, respectively, is compared with the goodness-to-fit of the widely 

used Gaussian model. Here, the well known Kolmogorov-Smirnov (KS) test is used for establishing 

whether a statistical model fits or not the true distribution [23]. The KS statistical test determines if 

two sets of data are drawn from the same statistical distribution. The test is based on the comparison 

between the cumulative distribution functions of the true data Sn(x)8 (or empirical distribution 

function) and the expected one F(x) (i.e., the cumulative distribution of the density function adopted 

for modeling the data) [23]. The KS test compares the cumulative distributions by means of a 

difference operator computing the so called KS-statistic Dn: 

{ })()(sup xSxFD n
x

n −=  (36)

 
8  x are the values for which both the cumulative densities are known. 
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It is worth noting that Dn is a random variable, whose distribution does not depend upon F(x), i.e. 

the KS test is non-parametric and distribution free. The output of the KS-test consists in the 

acceptance of the assumption that the true data distribution follows the selected model if α
nn DD ≤  

with a high probability PKS; else, the hypothesis is rejected and the two distributions are considered 

different. α
nD  is the critical value that depends on both the desired confidence level α and the 

number of samples n used for estimating the empirical distribution function9. 

The third and last experiment is aimed at establishing the possible improvements on the 

accuracy of the change-detection process (in terms of false and missed alarms, as well as total 

errors) by adopting the derived theoretical statistical models (for approximating the magnitude 

distributions of change and no-change pixels) rather than the widely used Gaussian model. In 

addition, an analysis on the impact of a poor pre-processing phase on the change-detection accuracy 

is also reported. 

A. Qualitative analysis of the class distributions in the Polar domain 

The aim of this experiment is to qualitatively show the effects of an inaccurate pre-processing 

phase (in terms of radiometric differences and/or misregistration noise) on the statistical 

distributions of magnitude and direction in the Polar coordinate system. In order to accomplish this 

analysis, we analyze the statistical distributions of SCVs obtained by applying the CVA technique 

to multitemporal images in three different cases: i) radiometrically corrected and coregistered 

images; ii) coregistered images without radiometric corrections; and iii) radiometrically corrected 

images with a poor coregistration (a residual shift of 2 pixels was accepted in both vertical and 

horizontal directions). 

As expected from the theoretical analysis, in all cases it is possible to identify two clusters in 

the Polar domain. In the case of corrected images (Fig. 5 (a)), the first cluster is centered in the 

origin of the polar plot and shows high occurrences (red color) close to zero and a Uniform 

 
9  Numerical values of α

nD  for different combination of α and n are well known tabulated values [23]. 
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distribution with respect to the direction domain. This cluster is associated to the unchanged SCVs. 

The second cluster shows a preferred direction and is located relatively far from the origin. This 

cluster is related to the SCVs associated with changed pixels. In this case, it is quite easy from a 

qualitative viewpoint to identify the decision boundary (threshold value on the magnitude) between 

the circle Cn of no-changed pixels and the annulus Ac of changed pixels. Furthermore, also the sector 

S of the changed pixels is clearly visible (see Fig. 5 (a)). 

The situation is significantly different in the second case, i.e. if no radiometric corrections are 

applied to the original images. Radiometric differences between the two acquisitions (see Fig. 5 (b)) 

have a dramatic impact on the distribution of the no-change class. As one can see, the cluster of 

unchanged pixels is no longer centered in zero; thus, the direction distribution is no further Uniform 

but assumes values in a subset of the domain, which is defined by the difference of the mean values 

of unchanged pixels at the two dates in the two considered spectral bands. In greater detail, in this 

condition, the no-change class distribution with non-zero mean can be approximated with the model 

described in section IV.B for the class of changed pixels. This behavior points out that the use of the 

Uniform model for the approximation of the distribution of the direction of the class of unchanged 

pixels in the data analysis phase (when images are not radiometrically corrected) is not acceptable 

and may result in poor performances. Furthermore, by analyzing Fig. 5 (b), it is possible to observe 

that the mean value of the magnitude of the unchanged pixels increases (with respect to the case of 

radiometrically corrected images), while the mean value of the magnitude of the changed pixels 

decreases. This means that if only the magnitude is used for the change detection (like in many real 

applications) the classes result more overlapped. This effect, which is due to the non-linearity of the 

magnitude operator, involves a higher change-detection error with respect to the case of 

radiometrically corrected data. In other words, the absence of radiometric corrections does not result 

in a bias contribution common to both classes, but may decrease significantly the separability 

between them in the magnitude domain. 
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(a) (b) 

 
(c) 

Figure 5 Histograms in the Polar coordinate system obtained after applying CVA to (a) multitemporal 
radiometrically corrected and coregistered images; (b) coregistered multitemporal images without 
radiometric corrections, (c) multitemporal radiometrically corrected images with a significant residual 
registration noise. 

 

In the third case, image misregistration generates in the histogram plotted in the Polar domain: 

i) more spread SCV distributions; ii) the presence of unchanged SCVs that are out of Cn and assume 

values in the entire direction domain. The spread increment is related to the non-perfect 

correspondence between multitemporal pixels, which leads to an increase of the variances of 

classes. The presence of pixels outside Cn and S is mainly due to the effects induced from border 

regions and details, which lead to the comparison of pixels belonging to completely different 

classes. These pixels have high magnitude values but direction that may differ from those of true 
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changed pixels (Fig. 5 (c)). This behavior points out a very important guideline for practical 

applications, i.e. in situations where the residual misregistration between images can not be 

neglected, the use of the direction variable in addition to the magnitude one can reduce false alarms 

due to registration noise. 

On the basis of the aforementioned analysis, it is clear that the Polar representation results in a 

useful qualitative tool for easily determining if a given dataset needs a pre-processing phase and 

which pre-processing steps (radiometric corrections, coregistration, etc.) should be applied for a 

proper data analysis. 

B. Quantitative analysis of the accuracy of the statistical models of class distributions in the Polar 

domain 

This experiment aims at a quantitative validation of the analytical models defined for 

approximating the statistical distributions of the magnitude and direction of the classes of changed 

and no-changed pixels. The validation is carried out according to the KS test. In these trials only the 

radiometrically corrected and coregistered images were considered. 

In order to perform the validation of the derived statistical models, the true mean values and 

standard deviations of the change and no-change distributions were computed from XD in the 

Cartesian coordinate system on the basis of the available reference map. The obtained values are 

summarized in Tabs. 2 and 3. For the magnitude of the change and no-change classes also a 

comparison between the goodness-to-fit of Rice or Rayleigh model, respectively, and the commonly 

used Gaussian model is performed. In the following, the analysis of the results obtained on the two 

classes are considered separately. 

B.1. Statistical models for the class of no-changed pixels 

In order to adopt statistical models in (29) and (30) for the magnitude and the direction of 

unchanged SCVs, respectively, it should be verified if the hypotheses in (27) and (28) hold. By 

observing numerical values of standard deviations ,σ ωnb  in Tab. 2, it is reasonable to conclude that 

they are very similar to each other and can be approximated to the mean of the standard deviations 
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(which is 9.49) thus satisfying (28). For the mean values no approximations should be introduced as 

(27) is verified (thanks to the use of the radiometrically corrected images). 

TABLE 2 
MEAN VALUES AND STANDARD DEVIATIONS FOR THE CLASS OF NO-CHANGED PIXELS IN THE CARTESIAN 

COORDINATE SYSTEM 
 

b ,ωnbµ  ,σ ωnb  
1 (TM4) 0 10.26 
2 (TM7) 0 8.73 

 

 

 
Figure 6 Comparison between the true behavior and the Gaussian and Rayleigh models for approximating the 

distribution of the magnitude of the unchanged pixels. 
 

Let us first consider the magnitude variable. In Fig. 6 it is possible to see that the Rayleigh 

model approximates with good accuracy the distribution of the unchanged pixels (extracted from the 

reference map). In greater detail, this model fits better the data than the Gaussian model. This is 

confirmed by the KS test that results in a significantly higher PKS value for the Rayleigh model than 

for the Gaussian one (0.6396 vs. 4102 −⋅ ). 
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Figure 7 Comparison between the true behavior and the Uniform model for approximating the distribution of 

the direction of the unchanged pixels. 
 

Let us now consider the behaviors of the distributions in the direction dimension. The KS test 

states that the SCV directions are uniformly distributed with a PKS value equal to 0.9939. This result 

is confirmed also by a qualitative visual comparison between the true data distribution and the 

Uniform distribution (Fig. 7). 

B.2. Statistical models for the class of changed pixels 

In order to adopt statistical models in (33) and (35) for the magnitude and the direction of 

changed SCVs, respectively, it should be verified if the hypothesis in (32) hold. Similarly to the no-

change class, from numerical values in Tab. 3 it is possible to observe that it is reasonable to 

approximate the standard deviation values ,σ ωcb  to the mean of the standard deviations, i.e. 9.77. 

This condition satisfies (32). 

From Fig. 8 it is possible to see that the Rice model fits well the data in general, and slightly 

better than the Gaussian model. This is confirmed by the KS test that results in a slightly higher PKS 

value for the Rice model than for the Gaussian one (0.9993 vs. 0.9961). The small difference in the 

two statistical models for this dataset is due to the fact that as the non-centrality parameter (34) 

becomes much larger than the standard deviation, then the Ricean distribution tends to become 
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Gaussian. 

TABLE 3 
MEAN VALUES AND STANDARD DEVIATIONS VALUES FOR THE CLASS OF CHANGED PIXELS IN THE CARTESIAN 

COORDINATE SYSTEM 
 

b cbµ ω,  cb ωσ ,  

1 (TM4) 58.94 8.90  
2 (TM7) 43.47 10.67 

 

 

 
Figure 8 Comparison between the true behavior and the Gaussian and Rice models for approximating the 

distribution of the magnitude of the changed pixels. 
 

The KS test states that the SCV direction is distributed according to (35) with a PKS value equal 

to 0.3306. The relatively small value of PKS is due to the presence of SCVs whose direction differs 

from the expected one (see Fig. 9), as SCV direction is highly sensitive to noise components. Such 

outliers can be related to the presence of residual misregistration noise. 
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Figure 9 Comparison between the true behavior and the general Non-uniform model for approximating the 

distribution of the direction of the changed pixels. 
 

C. Analysis of the effectiveness of the proposed framework for solving change-detection problems 

This experimental part has two goals: i) the first is to evaluate the impact of radiometric 

correction on the performances of CVA; and ii) the second is to assess the improvement of the 

change-detection accuracy obtained by adopting the proposed statistical models rather than the 

Gaussian one for the change and no change classes in the magnitude domain. 

In order to evaluate the impact of the radiometric corrections on the performances of the CVA 

technique, we have compared the accuracies yielded by thresholding the magnitude variable in the 

case of: i) radiometrically corrected and coregistered images; and ii) coregistered original images 

without radiometric corrections. To this end, the threshold values were defined according to a 

supervised trial-and-error procedure (MTEP), i.e. the minimum-error threshold was derived by 

performing a non-automatic evaluation of the overall change-detection errors versus all the possible 

values of the decision threshold; then the threshold value that yielded the minimum overall error 

was chosen. From the qualitative analysis carried out in subsection V.A, we expect that the change-

detection accuracy is lower when no radiometric corrections are applied. As can be seen from Tab. 

4, the MTEP procedure applied to the magnitude of the original dataset resulted in 1803 errors, 
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while we obtain only 704 errors when thresholding is applied to the magnitude obtained after a very 

simple radiometric correction procedure which adjusted the mean value of the images. The overall 

error is more than halved. In greater detail, after rediometrically correcting the multitemporal 

images, both missed and false alarms decreased significantly from 529 to 369 pixels and from 1274 

to 335 pixels, respectively. 

TABLE 4 
OVERALL ERROR, FALSE ALARMS AND MISSED ALARMS (IN NUMBER OF PIXELS) AND THRESHOLD VALUE 

RESULTING FROM THE MTEP APPLIED TO THE COREGISTERED IMAGES WITH AND WITHOUT RADIOMETRIC 
CORRECTIONS 

 

Radiometric corrections False 
alarms 

Missed 
alarms 

Overall 
errors 

Threshold 
value (T) 

None 529 1274 1803 47 
Mean adjustment 369 335 704 51 

 

In order to asses the effectiveness of the proposed statistical models in solving change-detection 

problems, we considered only the coregistered and radiometrically corrected multitemporal dataset. 

Here, the MTEP results have been compared with the performances obtained by solving the change-

detection problem according to the Bayes rule for minimum error (BRME) [22] under two different 

assumptions on statistical distributions: i) the proposed statistical models (i.e. Rayleigh model for 

the class of unchanged pixels and Rice model for the class of changed pixels); and ii) the widely 

used Guassian model for both classes. 

As expected, thanks to the capability of the Rayleigh and Rice density functions to better model 

the true data distributions (see subsection V.B), the proposed models allow to obtain a lower amount 

of total errors with respect to the model based on the Gaussian distribution (956 vs. 1143). This is 

due to the fact that using the proposed model, the obtained threshold value (i.e., 43) is much closer 

to the optimal one (i.e., 51) than the threshold computed with the Gaussian model (i.e., 40). It is 

worth noting that although significant, the difference of threshold values between the Gaussian and 

the proposed models is relatively small. This depends on the fact that on the considered dataset the 

Rice distribution is close to the Gaussian one, as the non-centrality parameter is much larger then 

the standard deviation. We expect that higher improvements can be obtained in more general cases. 
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TABLE 5 
OVERALL ERROR, FALSE ALARMS AND MISSED ALARMS RESULTING FROM THE SELECTION OF THE DECISION 

THRESHOLD VALUES CARRIED OUT BY USING MTEP, AND BME WITH THE PROPOSED STATISTICAL MODELS AND 
THE STANDARD GAUSSIAN STATISTICAL MODEL 

 

 False 
alarms 

Missed 
alarms 

Overall 
errors 

Threshold 
value (T) 

MTEP 369 335 704 51 
BME proposed models 855 101 956 43 
BME Gaussian model 1086 57 1143 40 

 

VI. CONCLUSIONS 

In this paper, a Polar framework for a formal representation and definition of the change vector 

analysis (CVA) technique has been presented, as well as a related theoretical study on data 

distributions. The main motivation of this work relies on the observation that the CVA is a widely 

used technique for unsupervised change detection in multispectral and multitemporal remote sensing 

images, but a precise theoretically framework concerning its definition and use has not proposed in 

the literature (in many applications CVA in used without a proper understanding of the implications 

of the representation of the change information in the magnitude-direction domain). In this work, we 

aimed at filling this gap by introducing: i) a proper Polar framework for the representation and the 

analysis of multitemporal data in the context of the CVA technique; ii) a set of formal definitions 

(which are linked to the properties of the data) related to pattern representation in the Polar domain; 

iii) a theoretical analysis of the distributions of changed and unchanged pixels in the Polar domain; 

iv) a critical analysis of the theoretical study of distributions aimed at driving a proper exploitation 

of the information present in the Polar representation; v) an example of use of the proposed 

framework in a real change-detection problem, with a qualitative and quantitative evaluation of the 

reliability of the derived distributions and of the simplifying assumptions considered in the 

theoretical analysis. 

In the light of the aforementioned contributions, we expect that the main impact of this work in 

the remote sensing community can be focused on the following issues: 
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i) possibility to use in all practical applications of the CVA technique (irrespectively of the 

specific change-detection problem considered) a uniform polar representation with proper 

formal definitions of the different regions of interest based on the proposed framework; 

ii) better understanding of the statistical properties of SCVs in the Polar domain and of the impact 

of the simplifying assumptions usually considered in the literature in the development of 

automatic data analysis algorithms; 

iii) presentation of a solid background for the development of advanced and precise automatic 

algorithms for change detection, which properly takes into account the statistical properties of 

data in the Polar domain; 

iv) better understanding of the fundamental role played by a proper pre-processing step (e.g., 

radiometric corrections, coregistration, PCT, diagonalization and whitening) for driving a 

correct design and use of efficient automatic data processing algorithms. 

The analysis carried out points out that some of the simplifying assumptions usually adopted for 

representing data distributions in the Polar domain can become critical if a precise modeling of the 

change-detection problem is desired. Among the other properties discussed in the Section IV.C, we 

stress three observations: 

• The theoretical and experimental analyses confirm that it may be critical solving the change-

detection problems by representing the magnitude of classes of unchanged and changed pixels 

with Gaussian distributions, rather than using the more accurate models described in this paper 

(i.e. the Rayleigh distribution for unchanged pixels and the Rice distribution for changed 

pixels); 

• radiometric corrections play a fundamental role in unsupervised change detection based on 

CVA: i) for increasing the separability between the classes of changed and unchanged pixels 

(by increasing the distance between the mean values of the two classes on the magnitude 

domain), and ii) for properly exploiting the direction information in the data processing phase 

(e.g., for identifying different kinds of change). If the radiometric corrections are neglected, the 
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direction distribution of the class of unchanged pixels is completely different from the expected 

Uniform model, resulting in an important source of errors in the design of automatic data-

processing techniques; 

• the use of the direction information in the change-detection algorithms can be very important 

for reducing the false alarms induced from registration noise. 

The effectiveness of the proposed Polar framework and of the related statistical analysis, as 

well as the importance of their implications have been verified on a real change-detection problem, 

by analyzing qualitatively and quantitatively the reliability of the simplifying assumptions 

considered in the theoretical analysis of data distributions and their impact on the precision of the 

models. The results obtained confirm that the theoretical models presented in this paper are suitable 

for a proper representation of the considered dataset when the CVA technique is adopted. In 

particular, these models significantly improve the representation of the distribution of data usually 

carried out with the reasonable, but in some cases imprecise, Gaussian model. 

As future developments of this work, we are: i) studying the reformulation of threshold 

selection algorithms developed in the literature [15],[16] according to the distributions derived from 

the theoretical analysis reported in this paper; ii) considering the properties of the direction 

information for: a) devising effective unsupervised change-detection algorithms capable to 

automatically identify different kinds of change in a generic multitemporal dataset; b) better 

reducing the effects of the registration noise in the Polar domain. 
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