English: A new Very Large Telescope (VLT) image of the Antennae Galaxies gives us what may be the second-best visible-light view yet of this striking pair of colliding galaxies with dramatically distorted shapes. This amazing object takes its name from the long antenna-like "arms" extending far out from the nuclei of the two galaxies, best seen in wider-field images by ground-based telescopes such as the one at this link.
This VLT view focuses instead on the galaxies’ nuclei, where the real action is taking place as the two galaxies merge into a single giant galaxy. Spurred by shock waves created by their gravitational wrestling, the two galaxies have become dotted with brilliant blue hot young stars in star-forming regions, surrounded by glowing hydrogen gas, shown here in pink. The two pale yellow blobs are the cores of the original galaxies, shining with the light of old stars and picked out by delicate lanes of dust.
The Antennae Galaxies were immortalised in 2006 by one of the NASA/ESA Hubble Space Telescope’s most famous images (composed by ESA’s Hubble group residing at ESO).
If you are hungry for more information about this amazing object, read the just-published ESO press release about the first image from ALMA, the Atacama Large Millimeter/submillimeter Array, which has just started its Early Science observations. ALMA , constructed by ESO and its international partners, observes the Universe in light with millimetre and submillimetre wavelengths — radically different from visible-light and infrared telescopes. ALMA’s view is the best submillimetre-wavelength image ever made of the Antennae Galaxies, despite being just a taster of what ALMA will deliver. The ALMA image was made using test data from only twelve antennas, and as the observatory grows, the sharpness, efficiency, and quality of its observations will increase dramatically.
to share – to copy, distribute and transmit the work
to remix – to adapt the work
Under the following conditions:
attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
https://creativecommons.org/licenses/by/3.0CC BY 3.0 Creative Commons Attribution 3.0 truetrue
Captions
Add a one-line explanation of what this file represents
A new Very Large Telescope (VLT) image of the Antennae Galaxies gives us what may be the second-best visible-light view yet of this striking pair of colliding galaxies with dramatically distorted shapes. This amazing object takes its name from the long antenna-like "arms" extending far out from the nuclei of the two galaxies, best seen in wider-field images by ground-based telescopes such as the one at this link. This VLT view focuses instead on the galaxies’ nuclei, where the real action is taking place as the two galaxies merge into a single giant galaxy. Spurred by shock waves created by their gravitational wrestling, the two galaxies have become dotted with brilliant blue hot young stars in star-forming regions, surrounded by glowing hydrogengas, shown here in pink. The two pale yellow blobs are the cores of the original galaxies, shining with the light of old stars and picked out by delicate lanes of dust. The Antennae Galaxies were immortalised in 2006 by one of the NASA/ESA Hubble Space Telescope’s most famous images (composedby ESA’s Hubble group residing at ESO).If you are hungry for more information about this amazing object, read the just-published ESO press release about the first image from ALMA, the Atacama Large Millimeter/submillimeter Array, which has just started its Early Science observations. ALMA , constructed by ESO and its international partners, observes the Universe in light with millimetre and submillimetre wavelengths — radically different from visible-light and infrared telescopes. ALMA’s view is the best submillimetre-wavelength image ever made of the Antennae Galaxies, despite being just a taster of what ALMA will deliver. The ALMA image was made using test data from only twelve antennas, and as the observatory grows, the sharpness, efficiency, and quality of its observations will increase dramatically.