Volatility Forecasting with Asymmetric Normal Mixture Garch Model: Evidence from South Africa
Atilla Cifter
Journal for Economic Forecasting, 2012, issue 2, 127-142
Abstract:
This paper investigates the relative performance of the asymmetric normal mixture generalized autoregressive conditional heteroskedasticity (NM-GARCH) and the benchmarked GARCH models with the daily stock market returns of the Johannesburg Stock Exchange, South Africa. The predictive performance of the NMGARCH model is compared against a set of the GARCH models with the normal, the Student-t, and the skewed Student-t distributions. The empirical results show that the NM-GARCH outperforms all other competing models according to Christoffersen’s (1998) tail-loss and White’s (2000) reality check tests. This evidence shows that mixture of errors improves the predictive performance of volatility models.
Keywords: volatility forecasting; value-at-risk; asymmetric normal mixture GARCH; reality check. (search for similar items in EconPapers)
JEL-codes: C32 C53 G17 (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.ipe.ro/rjef/rjef2_12/rjef2_2012p127-142.pdf
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:rjr:romjef:v::y:2012:i:2:p:127-142
Access Statistics for this article
Journal for Economic Forecasting is currently edited by Lucian Liviu Albu and Corina Saman
More articles in Journal for Economic Forecasting from Institute for Economic Forecasting Contact information at EDIRC.
Bibliographic data for series maintained by Corina Saman ( this e-mail address is bad, please contact ).