Estimation under Multicollinearity: Application of Restricted Liu and Maximum Entropy Estimators to the Portland Cement Dataset
Sudhanshu Mishra ()
MPRA Paper from University Library of Munich, Germany
Abstract:
A high degree of multicollinearity among the explanatory variables severely impairs estimation of regression coefficients by the Ordinary Least Squares. Several methods have been suggested to ameliorate the deleterious effects of multicollinearity. In this paper we aim at comparing the Restricted Liu estimates of regression coefficients with those obtained by applying the Maximum Entropy Leuven (MEL) family of estimators on the widely analyzed dataset on Portland cement. This dataset has been obtained from an experimental investigation of the heat evolved during the setting and hardening of Portland cements of varied composition and the dependence of this heat on the percentage of four compounds in the clinkers from which the cement was produced. The relevance of the relationship between the heat evolved and the chemical processes undergone while setting takes place is best stated in the words of Woods et al.: "This property is of interest in the construction of massive works as dams, in which the great thickness severely hinder the outflow of the heat. The consequent rise in temperature while the cement is hardening may result in contractions and cracking when the eventual cooling to the surrounding temperature takes place." Two alternative models have been formulated, the one with an intercept term (non-homogenous) that exhibits a very high degree of multicollinearity and the other with no intercept term (extended homogenous) that characterizes perfect multicollinearity. Our findings suggest that several members of the MEL family of estimators outperform the OLS and the Restricted Liu estimators. The MEL estimators perform well even when perfect multicollinearity is there. A few of them may outperform the Minimum Norm LS (OLS+) estimator. Since the MEL estimators do not seek extra information from the analyst, they are easy to apply. Therefore, one may rely on the MEL estimators for obtaining the coefficients of a linear regression model under the conditions of severe (including perfect) multicollinearity among the explanatory variables.
Keywords: Multicollinearity; Estimator; Restricted Liu; Maximum Entropy Leuven estimator; MEL family; Modular Maximum Entropy Leuven estimator; Least Absolute Deviation; Minimum Norm Least Squares; Moore-Penrose inverse; Portland cement dataset (search for similar items in EconPapers)
JEL-codes: C30 C31 C61 C8 (search for similar items in EconPapers)
Date: 2004-06-28
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2) Track citations by RSS feed
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/1809/1/MPRA_paper_1809.pdf original version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:1809
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().