Nothing Special   »   [go: up one dir, main page]

  EconPapers    
Economics at your fingertips  
 

Forecasting crude oil market volatility using variable selection and common factor

Yaojie Zhang, M.I.M. Wahab and Yudong Wang

International Journal of Forecasting, 2023, vol. 39, issue 1, 486-502

Abstract: This paper aims to improve the predictability of aggregate oil market volatility with a substantially large macroeconomic database, including 127 macro variables. To this end, we use machine learning from both the variable selection (VS) and common factor (i.e., dimension reduction) perspectives. We first use the lasso, elastic net (ENet), and two conventional supervised learning approaches based on the significance level of predictors’ regression coefficients and the incremental R-square to select useful predictors relevant to forecasting oil market volatility. We then rely on the principal component analysis (PCA) to extract a common factor from the selected predictors. Finally, we augment the autoregression (AR) benchmark model by including the supervised PCA common index. Our empirical results show that the supervised PCA regression model can successfully predict oil market volatility both in-sample and out-of-sample. Also, the recommended models can yield forecasting gains in both statistical and economic perspectives. We further shed light on the nature of VS over time. In particular, option-implied volatility is always the most powerful predictor.

Keywords: Volatility forecasting; Crude oil market; Machine learning; Big data; Variable selection (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207021002193
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:39:y:2023:i:1:p:486-502

DOI: 10.1016/j.ijforecast.2021.12.013

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2024-11-07
Handle: RePEc:eee:intfor:v:39:y:2023:i:1:p:486-502