A flexible control strategy of plug-in electric vehicles operating in seven modes for smoothing load power curves in smart grid
Siwar Khemakhem,
Mouna Rekik and
Lotfi Krichen
Energy, 2017, vol. 118, issue C, 197-208
Abstract:
Plug-in electric vehicles (PEVs) seem to be an interesting new electrical load for improving the reliability of smart grid. The purpose of this work is to investigate a supervision strategy based on regulated charging of PEVs in order to guarantee an optimized power management of the system and consequently a flatter power demand curve. The system mainly includes PEVs powered by a Lithium-ion battery ensuring the charging and discharging operations of these PEVs at home and a daily load power demanded by home appliances. The purpose of the considered strategy is to detect the connection status of each PEV and to establish the priority order between these PEVs with certain flexibility which results in managing the PEVs through seven operating modes. The response of the control algorithm enables to ensure the power flow exchange between the PEVs and the electrical grid, especially at rush hours, and to minimize load power variance aiming to achieve the smoothness for the power demand curve and to reduce the stress of the electrical grid. The simulation results are presented in order to illustrate the efficiency of this power control approach.
Keywords: Plug-in electric vehicles; Lithium-ion battery; Smart grid; Supervision strategy; Load power variance (search for similar items in EconPapers)
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216318448
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:118:y:2017:i:c:p:197-208
DOI: 10.1016/j.energy.2016.12.039
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().