Direct fitting of dynamic models using integrated nested Laplace approximations — INLA
Ramiro Ruiz-Cárdenas,
Elias T. Krainski and
Håvard Rue
Computational Statistics & Data Analysis, 2012, vol. 56, issue 6, 1808-1828
Abstract:
Inference in state-space models usually relies on recursive forms for filtering and smoothing of the state vectors regarding the temporal structure of the observations, an assumption that is, from our view point, unnecessary if the dataset is fixed, that is, completely available before analysis. In this paper, we propose a computational framework to perform approximate full Bayesian inference in linear and generalized dynamic linear models based on the Integrated Nested Laplace Approximation (INLA) approach. The proposed framework directly approximates the posterior marginals of interest disregarding the assumption of recursive updating/estimation of the states and hyperparameters in the case of fixed datasets and, therefore, enable us to do fully Bayesian analysis of complex state-space models more easily and in a short computational time. The proposed framework overcomes some limitations of current tools in the dynamic modeling literature and is vastly illustrated with a series of simulated as well as well known real-life examples from the literature, including realistically complex models with correlated error structures and models with more than one state vector, being mutually dependent on each other. R code is available online for all the examples presented.
Keywords: Approximate Bayesian inference; State-space models; Laplace approximation; Augmented model; Spatio-temporal dynamic models (search for similar items in EconPapers)
Date: 2012
References: Add references at CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947311003999
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:6:p:1808-1828
DOI: 10.1016/j.csda.2011.10.024
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().