Identifying the influential features on the regional energy use intensity of residential buildings based on Random Forests
Jun Ma and
Jack C.P. Cheng
Applied Energy, 2016, vol. 183, issue C, 193-201
Abstract:
Efficient and effective city planning in improving the energy performance of residential buildings requires a clear understanding of the influential features. Previous studies on modeling the relationships between influential features and the energy consumption have several gaps and limitations, such as the linear modeling methodology and insufficient consideration of particular features. This study therefore aims at investigating the influence of 171 possibly related features on the regional energy use intensity (EUI) of residential buildings using a non-linear regression algorithm, namely Random Forests (RF). The New York City (NYC) was focused on due to data availability. The 171 features covered seven different aspects, which are building, economy, education, environment, households, surrounding, and transportation. The average site EUI of the residential buildings in each Block Group (BG) was set as the dependent variable. The regression model was compared to the models using typical linear methods, such as Multiple Linear Regression and Lasso. The results show that the RF model achieved a lower mean square error. In addition, the top 20 influential features were identified based on the out-of-bag estimation in RF. Results show that less percentage of well-educated people, higher percentage of households heated by fuel oil, lower household income and more residential complaints per capita are correlated with higher average site EUI in NYC. Related suggestions on improving the energy performance in different regions are presented to the local government.
Keywords: Energy use intensity (EUI); Multi-family residential buildings; Random Forests (RF); Regional effect; Variable importance (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (34)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916311941
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:183:y:2016:i:c:p:193-201
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.08.096
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().