Optimal autonomous microgrid operation: A holistic view
Ketan P. Detroja
Applied Energy, 2016, vol. 173, issue C, 320-330
Abstract:
The prospects of incorporating a consumer side load-scheduling algorithm that works in conjunction with the unit commitment problem, which in turn coordinates with real-time load balancer, are discussed in this paper. An integrated framework for an autonomous microgrid with objectives of increasing stability, reliability and economy is proposed. From the microgrid operators’ point of view, the load side scheduling helps reduce the stress on the system especially during peak hours thereby ensuring system stability and security. From the consumers’ point of view, the dynamic electricity prices within a day, which are a reflection of this time varying stress on the system, encourage them to endorse such a scheme and reduce their bills incurred. The unit commitment problem is run a day in advance to determine generator outputs for the following day. Owing to unpredictable weather conditions, running unit commitment problem in advance does not guarantee planned real-time generation in the microgrid scenario. Such variability in forecasted generation must be handled in any microgrid, while accounting for load demand uncertainties. To address this issue a load side energy management system and power balance scheme is proposed in this paper. The objective is to ascertain uninterrupted power to critical loads while managing other non-critical loads based on their priorities.
Keywords: Cost function; Optimal scheduling; Load management; Day-ahead optimization; Energy management; Online optimization (search for similar items in EconPapers)
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191630513X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:173:y:2016:i:c:p:320-330
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.04.056
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().