Highly irregular functional generalized linear regression with electronic health records
Justin Petrovich,
Matthew Reimherr and
Carrie Daymont
Journal of the Royal Statistical Society Series C, 2022, vol. 71, issue 4, 806-833
Abstract:
This work presents a new approach, called Multiple Imputation of Sparsely‐sampled Functions at Irregular Times (MISFIT), for fitting generalized functional linear regression models with sparsely and irregularly sampled data. Current methods do not allow for consistent estimation unless one assumes that the number of observed points per curve grows sufficiently quickly with the sample size. In contrast, MISFIT is based on a multiple imputation framework, which, as we demonstrate empirically, has the potential to produce consistent estimates without such an assumption. Just as importantly, it propagates the uncertainty of not having completely observed curves, allowing for a more accurate assessment of the uncertainty of parameter estimates, something that most methods currently cannot accomplish. This work is motivated by a longitudinal study on macrocephaly, or atypically large head size, in which electronic medical records allow for the collection of a great deal of data. However, the sampling is highly variable from child to child. Using MISFIT we are able to clearly demonstrate that the development of pathologic conditions related to macrocephaly is associated with both the overall head circumference of the children as well as the velocity of their head growth.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/rssc.12556
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:71:y:2022:i:4:p:806-833
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876
Access Statistics for this article
Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith
More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().