Bayesian Neural Networks for Macroeconomic Analysis
Niko Hauzenberger,
Florian Huber,
Karin Klieber and
Massimiliano Marcellino
Papers from arXiv.org
Abstract:
Macroeconomic data is characterized by a limited number of observations (small T), many time series (big K) but also by featuring temporal dependence. Neural networks, by contrast, are designed for datasets with millions of observations and covariates. In this paper, we develop Bayesian neural networks (BNNs) that are well-suited for handling datasets commonly used for macroeconomic analysis in policy institutions. Our approach avoids extensive specification searches through a novel mixture specification for the activation function that appropriately selects the form of nonlinearities. Shrinkage priors are used to prune the network and force irrelevant neurons to zero. To cope with heteroskedasticity, the BNN is augmented with a stochastic volatility model for the error term. We illustrate how the model can be used in a policy institution by first showing that our different BNNs produce precise density forecasts, typically better than those from other machine learning methods. Finally, we showcase how our model can be used to recover nonlinearities in the reaction of macroeconomic aggregates to financial shocks.
Date: 2022-11, Revised 2024-04
New Economics Papers: this item is included in nep-big, nep-cmp, nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2211.04752 Latest version (application/pdf)
Related works:
Working Paper: Bayesian Neural Networks for Macroeconomic Analysis (2024)
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2211.04752
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().