Spherical Preferences
Christopher Chambers and
Federico Echenique
Papers from arXiv.org
Abstract:
We introduce and study the property of orthogonal independence, a restricted additivity axiom applying when alternatives are orthogonal. The axiom requires that the preference for one marginal change over another should be maintained after each marginal change has been shifted in a direction that is orthogonal to both. We show that continuous preferences satisfy orthogonal independence if and only if they are spherical: their indifference curves are spheres with the same center, with preference being "monotone" either away or towards the center. Spherical preferences include linear preferences as a special (limiting) case. We discuss different applications to economic and political environments. Our result delivers Euclidean preferences in models of spatial voting, quadratic welfare aggregation in social choice, and expected utility in models of choice under uncertainty.
Date: 2019-05, Revised 2020-02
New Economics Papers: this item is included in nep-des, nep-mic and nep-upt
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/1905.02917 Latest version (application/pdf)
Related works:
Journal Article: Spherical preferences (2020)
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1905.02917
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().