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Abstract: We introduce a novel speckle noise reduction algorithm for
OCT images. Contrary to present approaches, the algorithm does not
rely on simple averaging of multiple image frames or denoising on the
final averaged image. Instead it uses wavelet decompositions of the single
frames for a local noise and structure estimation. Based on this analysis,
the wavelet detail coefficients are weighted, averaged and reconstructed. At
a signal-to-noise gain at about 100% we observe only a minor sharpness
decrease, as measured by a full-width-half-maximum reduction of 10.5%.
While a similar signal-to-noise gain would require averaging of 29 frames,
we achieve this result using only 8 frames as input to the algorithm. A
possible application of the proposed algorithm is preprocessing in retinal
structure segmentation algorithms, to allow a better differentiation between
real tissue information and unwanted speckle noise.
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1. Introduction

OpticalCoherence Tomography (OCT) [1] has become a well-established modality for depth
resolved imaging of translucent tissues. Ophthalmology has particularly benefited from the
inventions and improvements made to OCT systems. In vivo imaging of the retina [2] is estab-
lished in daily clinical practise and measurements performed on these images aid the diagnosis
of pathologies by physicians [3, 4, 5, 6]. An example for such measurements is determining the
thickness of single retinal layers [7, 8, 9].

To speed up the diagnosis and to avoid observer differences, measurements have been au-
tomated by software methods. Regardless of the structure to be observed or automatically
segmented, e.g. retinal layers, drusens, or the optic nerve head, one common component in
modern OCT systems is the speckle noise suppression, since the OCT images are corrupted
by unwanted speckle noise. This noise is generated by the interference of multiple scattered
photons and complete loss of photons in the tissue. Suppression methods enhance the tissue
structure for better visualization and prevention of automated segmentation errors. The devel-
opment of these methods is challenging, as speckle noise differs in its properties from the zero
mean, isotropic Gaussian noise, which is usually assumed to be present in natural scenes taken
with a CCD-sensor. Such a noise model is well understood in its behaviour and removal process
[10].

The properties of OCT intensities and speckle behaviour were investigated in [11, 12, 13].
Speckle is not pure noise. It also transports image information. Thus, we differentiate between
speckle and speckle noise, where the later is the pure unwanted corruption to an ideal OCT
signal. As the speckle is image information, its pattern does not change if no physical parameter
of the imaging system is altered. The speckle and thus the noise are spatially correlated [14].
Their distribution properties change depending on the intensity scale space in which the images
are viewed, on the position in the image, and on the scattering properties of the imaged tissue
[15].

State-of-the-art speckle suppresion methods can be roughly categorized in frame averaging
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methods and digital denoising algorithms. The first category can be further split into systems
thatalter parameters of the imaging system in between the multiple recordings or rely on the
imaged subject itself to change the speckle pattern, like for example due to movement of the
eye when imaging the retina.

Parameters that are changed in OCT systems to decorrelate speckle of multiple recorded
frames are the incident angle of the laserbeam [16, 17, 18, 19], the recording angle of the
backreflected light [20] or the frequency of the laser beam [21]. These methods can also be
utilized when the imaged object is static, as for example in the imaging of paint layers as
performed by Hughes et al. [19]. In the case of imaging of the eye, the position of the object
of interest changes constantly due to: a) small motions caused by respiration and heart beat;
b) movements of the eye itself, like for example saccadic motion. With the development of
fast frequency domain OCT systems, multiple B-Scan recordings at the same or nearly the
same positions became possible. To compensate for small motions that might have happened,
weighted averaging schemes were proposed [22] or the multiple frames were registered by
cross correlation [23, 24]. An additional eye tracking hardware can compensate for transversal
motion before the scans take place [25].

A multitude of well known digital denoising methods have been adapted for OCT images.
Simple average and median filters have been utilized in [26]. Marks et al. [27] formulated an
I-divergence regularization approach for despeckling. A new method based on bayesian es-
timations in large neighborhoods was formulated by Wong et al. [28]. Diffusion filters have
proven to be well suited for OCT speckle suppression. Salinas et al. [29] proposed the use of
complex diffusion. This approach was further improved by Bernardes et al. [30]. Puvanathasan
et al. [31] included edge information and a noise estimate in their formulation of a nonlin-
ear isotropic diffusion denoising. Another prominent technique uses wavelet thresholding or
comparable methods. Wavelet methods have the advantage of performing denoising on mul-
tiple resolutions, which is desireable when dealing with neighborhood correlated noise. The
proposed formulations of wavelet denoising algorithms for OCT images range from spatially
adaptive wavelet filters [32] and the use of modern wavelet decompositions, like the dual tree
complex wavelet transformation [33], to curvelets transformations [34].

An extensive comparison of standard digital denoising methods has been performed by Oz-
can et al. [35]. Among others, wavelet thresholding with shift invariant wavelets yielded the
best results. In addition to comparing various filters, Ozcan et al. also adressed the question of
multiframe data and investigated if a denoising of the single frames before averaging has advan-
tages over denoising the averaged frame. They conlude that, in terms of quantitative evaluation
metrics, no significant difference could be observed. The computation time however is much
lower when only the averaged frame is processed. Ozcan et al. processed the single frames
indenpendently before averaging.

We propose a new method for performing denoising of multiple frame data, were the single
frames are processed before averaging, but information from all frames is utilized. By compar-
ing a single frame to the other frames in the dataset, we are able to differentiate more precisly
between tissue structure and unwanted noise. We formulated this idea in the framework of
wavelet denoising, as wavelet denoising is widely acknowledged to provide good results for
OCT images. The concept, however, is not limited to wavelet denoising. It may easily be incor-
porated in other denoising techniques.

Multiframe denoising where single frames are denoised by utilizing a multitude of frames are
known from other imaging modalities. Guo and Huang [36] proposed a method for magnetic
resonance image denoising, where a low resolution reference frame steers the denoising of a
second noise image with higher resolution. Azzabou and Paragios [37] denoised ultrasound
sequences by adding temporal filtering within the sequence, assuming that the image content
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does not vary to a large extend from frame to frame. As the acquisition process in OCT is
muchfaster than in ultrasound and the scanning location may be further stabilized by the use
of an eye tracker or software motion-artifact correction, we can assume no motion at all. The
algorithm in our work is inspired by Borsdorf et al. [38, 39]. They reconstructed multiple images
from distinct selections out of a set of computed tomography (CT) projections. By computing
correlations in between the reconstructions, a wavelet denoising approach could be enhanced.
Splitting projection data for multiple reconstructions in CT leads to a higher noise level on the
single frames. Thus, only a two frame denoising was proposed. With OCT we can in theory
aquire a very large number of frames with equivalent noise level. We make use of this property.
Our algorithm expects at least 2 input frames, but more input frames are favored.

The remainder of the paper is structured as follows: In section 2 we describe our dataset,
the proposed method for denoising multiple frame data, and the evaluation process for gaining
quantitative results. Results and a comparison to standard single frame algorithms, namely
median filtering and wavelet thresholding, are presented in section 3. Our work is summarized
in section 4. Here conclusions are also drawn and suggestions for future work are given.

2. Method

2.1. Data

A dataset for the quantitative evaluation of our method was acquired by scanning a pigs eye
ex-vivo with a Spectralis HRA & OCT (Heidelberg Engineering) in high speed mode with 768
A-scans. The pixel spacing of the resulting images is 3.87µm in the axial direction and 14µm
in the transversal direction. The resolution of the system in the axial direction is 7µm. The eye
tracker of the Spectralis was switched off during image acquisition.

The eye was placed in front of the OCT device. It was rotated around the center of its lens.
Sets of 13 frames each were recorded at 35 eye positions, corresponding to a complete 0.384mm
shift in the transversal direction. Speckle noise can be assumed to be uncorrelated in between
the scans from the varying positions. The opacity of the eye was increased as the eye lost
humidity during transportation. Thus, the image quality was decreased by a lower signal-to-
noise ratio. This effect, however, is not unwanted in our evaluation. Our goal is to deal with
and improve images with very low signal-to-noise levels as are often observed in daily clinical
practise, particularly in the scans of elderly persons with cataract, glaucoma or age-related
macula degeneration.

A gold standard image for the evaluation that should contain as little speckle noise as possible
was created by averaging all 455 recorded frames. Therefore, in a first step the 35 image sets
corresponding to the acquisition at the 35 fixed positions were averaged. Although a large
amount of the speckle noise within these sets is correlated, an improvement of the signal-to-
noise ratio was observed, as the uncorrelated part of the noise is reduced. Next, the 35 averaged
images were registered. First, a manual registration was performed. Afterwards, these manual
registrations were automatically optimized by minimizing the sum of squared distances (SSD)
between the averaged images. Only rigid transformations, that is translation and rotation, were
considered. A powell optimizer was utilized for the optimization. The rotation and translation
parameters are applied to all images before further processing. Figure 1 shows examples of:
the gold standard, an average of 8 random frames from the dataset, as well as examples of two
single frames.

In addition to the pigs eye, the fundus of a normal human subject was recorded to demon-
strate the applicability of our algorithm to real word situations. In this case the eye motion was
compensated by the built-in eye tracker of the Spectralis. Due to eye motion during the scanning
process the single frames of this human eye fundus data set are assumed to have uncorrelated
speckle patterns.
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(a)

(b)

(c)

(d)

Fig. 1. Example images from the pig eye dataset. (a) Gold standard image, created by
averaging 455 frames. An exemplary region is magnified, indicated by the white rectangle.
To allow a better visual comparison, this region will also be magnified on all subsequent
images shown in this work. (b) Average of 8 randomly selected frames. For display reasons,
this image and the remaining images in this work are cropped. (c, d) Single frames from
the averaged dataset in (b).



Fig. 2. Flow diagram of the proposed multiframe denoising algorithm. The single images
Fi arescaled with a logarithmic transformation and wavelet decomposed. Weights are esti-
mated from the wavelet coefficients and applied to the detail coefficients. Averaging in the
wavelet domain and a wavelet reconstruction yields the final imageR.

2.2. Algorithm

A complete overview of the algorithm is shown in figure 2. The processing steps are logarithmic
scaling, wavelet decomposition, weight estimation, weight application, averaging and wavelet
reconstruction. The steps will be explained in detail below. The data input to our algorithm are
imagesFi , with i ranging from 1 toN. N is the number of images. The denominations “image”
and “frame” are treated as equivalent in this work, where the latter better expresses the idea of
multiple captures with the same content.

Logarithmic transformation: A logarithmic transformation is applied to the intensities of
the input frames. This common practise allows the assumption of a near additive noise model
in the logarithmic scale space. An ideal imageS is corrupted with noiseNi . Ni differs and is
assumed to be uncorrelated with other single frame acquisitions.

Fi = S+Ni (1)

Furthermore, the standard deviation of the noiseσi(x) at a positionx is assumed to be approx-
imately the same for each image as the tissue properties do not change during the acquisition
process:

σi(x) ≈ σ j(x) (2)

where j is also a frame number andi 6= j.
Wavelet decomposition:The single frames are decomposed by a wavelet transformation

with a maximum decomposition levelL. This decomposition yields approximation coefficients
Al

i and detail coefficientsWl
i,D , wherel is the decomposition level andD the direction (horizon-

tal, vertical, diagonal) of the detail coefficients. We use two different wavelet transformations
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and compare them to each other. The first is the discrete stationary wavelet transformation [40]
with Haar wavelets (DSWT). No downsampling is applied in between the wavelet decomposi-
tion levels. The second wavelet transformation is the dual tree complex wavelet transformation
(DTCWT) [41]. In both wavelet decompositions, we store the approximation coefficients for
each levell , as they are used later on in the algorithm.

Coefficient weighting, averaging, and wavelet reconstruction:The denoising of the im-
ages is performed by weighting the detail coefficients at positionx with a weightGl

i,D

W̃l
i,D(x) = Gl

i,D(x) ·Wl
i,D(x) (3)

whereW̃l
D are the weighted detail coefficients. After weighting, the detail and approximation

coefficients are averaged:

Wl
D(x) =

1
N

N

∑
i=1

W̃l
i,D(x) (4)

Almax(x) =
1
N

N

∑
i=1

Almax
i (x) (5)

The coarsest wavelet decomposition level is denoted bylmax. The inverse wavelet transfor-
mation of the averaged coefficients yields the final result. The remainder of this subsection
presents the proposed weightsGl

i,D , which exploit the existence of multiple frame data.
Weight computation: Weights for the standard wavelet soft thresholding can be formulated

as:

Gl
D(x) =







Wl
D(x)−sgn(Wl

D(x))τ
Wl

D(x)
,

∣

∣Wl
D(x)

∣

∣ > τ

0, otherwise
(6)

The omission of the frame numberi indicates the application of the weights on the averaged
data. The thresholding parameter isτ. We compare our method to standard wavelet soft and
hard thresholding on the averaged frames. We also compare it to median filtering as a represen-
tative of non-wavelet based denoising methods. The latter was chosen as it has been succesfully
applied in OCT retinal layer segmentation preprocessing [42, 43, 44]. To allow for a fair com-
parison, we used a squared window for the median filter, as the wavelet based methods do not
prefer a certain direction in advance. It must, however, be noted that in real applications it may
be advantageous to choose rectangular shaped windows.

Two different weights are proposed: A significance and a correlation weight. A combination
of these two weights is also proposed. The significance weight provides a local noise estimation
calculated on the detail coefficients. Contrary to the algorithm proposed by Borsdorf et al. [39]
for CT denoising, by having an expected number of input frames larger than 2 we can perform
our weight computation on single detail coefficients. The mean squared distanceσS,i,D of the
detail coefficients of one image to the others is computed at each levell and positionx:

σ l
S,i,D

2
(x) =

1
N−1

N

∑
j=1∧ j 6=i

(

Wl
i,D(x)−Wl

j,D(x)
)2

(7)

In the case of the DTCWT,σS,i,D is calculated on the absolute values of the coefficients. This
measurement is motivated by the assumption that if a coefficient at a certain position differs to
a large extend from the coefficients at the same position on the other frames it is most likely
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corrupted by noise. The significance weightsGsig whichlower the influence of such coefficients
on the final result are then calculated by

Gl
sig,i,D(x) =

{

1,
∣

∣

∣
Wl

i,D(x)
∣

∣

∣
≥ kσ l

S,i,D(x)

θi(Wl
1,D(x), ...,Wl

m,D(x)), otherwise
(8)

where the parameterk controls the amount of noise reduction. Asθ we choose

θi(w1, ...,wm) =
1

m−1

m−1

∑
j=0∧ j 6=i

∣

∣

∣

∣

1− wi

w j

∣

∣

∣

∣

(9)

θi is scaled to the interval[0;1]after calculation for a single coefficient.
The correlation weightGcorr is calculated on the approximation coefficients and provides

information on whether a structure is present in the current frame and position or not. The com-
putation we propose is derived from the work of Borsdorf et al. [39], but modified and adapted
to the larger input data sets OCT offers. It is motivated by the fact that if edge information
is present in a position of a single frame the correlation to the other images calculated in a
small neighborhood around this position is higher than in homogeneous regions. If noise has
degraded the edge information on one single frame, the correlation will also be lower. So for
each approximation coefficient the median of the correlation to each other image within a small
neighborhood is calculated:

Gl
corr,i(x) = medi6= j

(

1
2

Corr(V l
i (x),V l

j (x))+1

)p

(10)

whereV l
i is the vector of all approximation coefficients in a neighborhood (5×5 pixels) around

the positionx in decomposition layerl of frame i. In the case of the DTCWT, again the ab-
solute values of the coefficients are used for the calculation.Corr is the Pearsons correlation
coefficient.p is the parameter that controls the amount of noise reduction. The weightGcorr,i is
applied to the detail coefficients of all 3 directions.

The significance and the correlation weight can be combined. One solution for the combina-
tion of the weights is modifying the parameterp in the calculation of the correlation weights
with the significance weights:

Gl
comb,i(x) = Gl

corr,i(x) with p= p̂· (1−Gl
sig,i,D(x))2 +1 (11)

wherep̂ is a fixed parameter.

2.3. Evaluation

The goal of developing denoising algorithms in general is to reduce the amount of noise without
changing the image information. To quantify our results, we measure both the reduction of noise
with the signal-to-noise ratio gain (SNRgain) and the integrity of the image information by the
integrity of the edges. As we want to avoid edge bluring, the full-with-half-maximum reduction
(FWHMred) at certain edges is calculated.

Noise reduction: In image processing, two common definitions for the signal-to-noise ratio
(SNR) can be found:

SNR1 =
σ(S)

σ(N)
, or SNR2 =

µ(S)

σ(N)
(12)

whereσ(S) andσ(N) denote the standard deviations of the ideal signal and the noise respec-
tively. µ(S) is the mean value ofS. In our evaluation, we consider the improvement of the SNR
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of the filtered image compared to a simple averaging. Both of the definitions in equation 12
leadto the same formula:

SNRgain =
SNR1(F f )

SNR1(Fa)
−1 =

SNR2(F f )

SNR2(Fa)
−1 =

σ(Na)

σ(Nf )
−1 (13)

whereF f andFa are the filtered and the averaged image respectively andNf andNa are the
noise of these images. The real, unknown noise signal is estimated by the difference of each
image to the gold-standard imageFg.

Na ≈ Fa−Fg, Nf ≈ F f −Fg (14)

The SNR-gain is measured at different regions of interest (ROI) and averaged. The 6 ROIs with
approximately to homogeneous intensities are shown as red squares in figure 3.

Edge integrity: The full-width-half-maximum (FWHM) is a measurement for the sharpness
of the edge. We examine horizontal edges within a ROI, where the columns are assumed to be
perpendicular to the edge, i.e. the values of the columns represent the edge profile. The columns
within the ROI are registered by minimizing the mean squared distance to the horizontal average
of all columns. The values in the direction of the edge are then summed up to reduce the
influence of noise. A logistic sigmoid functionΓ(x) is fitted to the resulting values with

Γ(x) = q1 +
q2

1+exp
(

− x+q3
q4

) (15)

whereq1 to q4 arethe parameters that are optimized by a nonlinear regression using the Matlab
(Mathworks, Inc.)nlinfit method. The resulting function is called the edge response function.
Its slope and therefore its sharpness is described by its derivativeΓ′(x) which is given by

Γ′(x) =
q2

q4

exp
(

− x+q3
q4

)

(

1+exp
(

− x+q3
q4

))2 (16)

TheFWHM measures the width ofΓ′(x) at the half of the maximum (Γ′(−q3)/2).

FWHM =

∣

∣

∣

∣

q4 ln

(

−2d+1−
√

1−4d

−2d+1+
√

1−4d

)∣

∣

∣

∣

, with d =
Γ′(−q3)q4

q2
(17)

Thesmaller the FWHM-value the sharper is the edge. To measure the blurring of the edge we
calculate the ratio FWHMred between the FWHM in the filtered image and the averaged image
generated with the same frames.

FWHMred =
FWHM(F f )

FWHM(Fa)
−1 (18)

The FWHMred is measured at edges with different contrasts. The 3 edge ROIs are marked in
figure 3 as blue rectangles. The values for the different edges are averaged to get one sharpness
reduction value for each image.

All quantitative numbers were computed using randomly generated sets of images. At most
one frame was randomly selected from each of the possible 35 positions (13 frames per posi-
tion) of the pig eye data set. To compensate for the random choice, 10 random sets were used
for each measurement and the results were averaged. As the parameter choice allows setting the

#158246 - $15.00 USD Received 14 Nov 2011; revised 18 Jan 2012; accepted 20 Jan 2012; published 22 Feb 2012
(C) 2012 OSA 1 March 2012 / Vol. 3,  No. 3 / BIOMEDICAL OPTICS EXPRESS  581



Fig. 3. Gold standard image with the regions of interest marked for the two evaluation
metrics.Red rectangle regions are used in theSNRgain measurement. Blue rectangle regions
are used in theFWHMred measurements.

strength of the denoising behaviour, we choose comparable results with a SNRgain of around
100% as exemplary quantitative numbers and visual examples.

The implementation of the algorithm was done in Matlab (Mathworks, Inc., Natick, USA).
On a Macbook Pro with a 2.66 Intel Core Duo processor and 4GB of memory, a 496 times
394 image set with 8 frames takes 42s to denoise, using the combination of significance and
correlation weight. The algorithm was not optimized for speed. However, algorithm speed is
not within the scope of this work.

3. Results and Discussion

To assess the performance of our proposed algorithm, we evaluate it quantitatively and qual-
itatively. We first perform a quantitative evaluation with the metrics presented in section 2.3.
The algorithm behaviour with varying parameters is discussed. Afterwards the performance is
quantitatively compared to state-of-the-art methods, namely simple frame averaging, median
filtering, and wavelet soft and hard thresholding. We conclude the evaluation with a visual
inspection of the results on both the pig eye data and the human eye data.

3.1. Parameter Behaviour

The behaviour of the algorithm can be adjusted by the following parameters: The choice of
the wavelet, the weight computation method, the parameterk in the significance weight, the
parameterp in the correlation weight, and the number of wavelet levels. The number of input
frames also has to be taken into account. Due to this large number of parameters, an evaluation
of all possible combinations is not feasible. We restrict ourself to parameter combinations that
have proven to provide good results in preliminary tests and vary only few parameters to provide
an understanding of the algorithm behaviour.

First, we compare the 3 different weight computation methods. The results are computed us-
ing 8 frames and 5 wavelet decomposition levels. The quantitative results are computed for both
proposed wavelets and are shown in figure 4. The FWHMred is plotted against the SNRgain. An
ideal filter would completely leave the edge sharpness intact, which corresponds to a FWHMred

of 0%, while providing high SNRgain values.
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Fig. 4. Sharpness reduction as measured by the full-width-half-maximum reduction
(FWHMred) plotted against noise reduction as measured by the signal-to-noise gain
(SNRgain) for 8 frames and 5 wavelet levels using the wavelet multiframe noise reduc-
tion method. Results are shown for: Significance weight (parameterk varied) and discrete
stationary wavelet transform with Haar wavelets (DSWT); significance weight (parameter
k varied) and dual tree complex wavelet transformation (DTCWT); correlation weight (pa-
rameterp varied) and DSWT; correlation weight (parameterp varied) and DTCWT; combi-
nation of significance and correlation weight (parameterk andp∗ varied) and DSWT; com-
bination of significance and correlation weight (parameterk andp∗ varied) and DTCWT.

We vary the parameterk in 0.1 steps from 1 to 2.4 in the computation of the significance
weight results. Using the DSWT, we achieve 109% SNRgain with a sharpness loss of 13.8%.
The DTCWT performed worse. Here a comparable SNRgain of 106.0% lead to a sharpness loss
of 40.7%. This discrepancy can be explained by the length of the support of the two wavelet
transformations. The significance weight is computed for each detail coefficient position inde-
pendently without any influence of the neighborhood. However, the value of the detail coeffi-
cient is influenced by a larger neighborhood in the spatial domain when the DTCWT is applied
compared to when Haar wavelets are used. Thus, noisy coefficients near edges have a higher
probabilty of influencing the appearance of the edge. For low SNRgain values, the significance
weight with the DSWT delivered the best quantitative results.

In the case of the correlation weight, the support of the wavelets plays only a minor role, as
this weight is by itself computed in a window on the approximation coefficients. Thus, the cor-
relation weight, where the parameterp is varied from 0.25 to 2 in 0.25 steps, shows comparable
results for both wavelets. With increasing SNRgain, the FWHMred rises almost lineary, yielding
an 11.3% FWHMred at 98.8% SNRgain for the DTCWT.
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If a high SNRgain is desired, the combination of the significance and the correlation weight
provides the best quantitative evaluation results. All combinations ofk ranging from 0.5 to
1.5 in 0.1 steps withp ranging from 0.25 to 2.5 in 0.25 steps were tested. The FWHMred is
lower than the correlation weight for all SNRgain values, with the DSWT delivering better edge
preservation at high noise reduction rates. This effect is most likely also related to the larger
support of the DTCWT.

One important question is the behaviour of the algorithm when different numbers of input
frames are used. We, therefore, also computed results on 4 frames. The same parameters were
used as with 8 frames. Figure 5 shows the amount of noise reduction plotted against edge
degradation. When comparing the plots to the 8-frame results in figure 4, two differences can
be observed. First, the significance weight performs best only on a decreased range of small
SNRgain values. Second, the DSWT outperforms the DTCWT more clearly when both weights
are combined. Note, that the SNRgain and FWHMred values in figure 4 and figure 5 do not repre-
sent abolute numbers (see section 2.3), but are computed relative to the average of the respective
number of frames, so only thebehaviourof the curves allow an appropriate comparison.

The number of wavelet levels has only a minor influence on the result. With fewer than
5 decomposition levels, the FWHMred slightly increases. We therefore used 5 decomposition
levels troughout the results computation. We chose two values shown in table 1 to exemplify
this behaviour. Furthermore, table 1 presents the quantitative evaluation results for a SNRgain

of roughly 100%.
To sum up, we propose the usage of the significane weight for small amounts of noise reduc-

tion, for example for visualization purposes. For heavy noise suppression, as is required, for
example, in segmentation preprocessing, a combination of significance and correlation weight
is feasible. Suprisingly, although the DTCWT is the more advanced wavelet and delivers good
results with single frame denoising, as we will see in the next section, the DSWT with Haar
wavelets is better suited to the multiframe method due to its shorter support.

3.2. Comparison to state-of-the-art

A comparison of the proposed multiframe method to averaging, median filtering, and standard
wavelet thresholding methods is shown in figure 6. We chose soft thresholding for the DSWT
and hard thresholding for the DTCWT, as these outperformed the respective competitor in the
preliminary tests. The FWHMred of the frame averaging method was computed in relation to
the average of 8 frames (see section 2.3). We averaged up to 40 frames. Exemplary numbers of
averages are marked in figure 6.

The traditional DSWT clearly exhibits the worst performance, followed by median filtering
with window sizes of 3×3 and 5×5. The quantitative evaluation results of the DTCWT used
on a 8-frames average are better than frame averaging of up to 18 frames. If high computational
speed is required in preprocessing, this method should be considered. The multiframe method,
however, delivers better edge preservation in any case. The amount of edge sharpness loss
compared to averaging is small. Averaging 29 frames leads to an SNRgain of 100.0% and a
FWHMred of 8.3%. A comparable SNRgain achieved with only 8 frames and the multiframe
method yields a 10.5% FWHMred.

3.3. Visual inspection

It is known that good quantitative denoising performance does not necesssary lead to a vi-
sually pleasing image. Especially when using wavelets, artifacts of the denoising algorithm
may disturb the image appearance. We therefore chose example image results from the pig eye
dataset, of which quantitative evaluation results were given in table 1, for a visual inspection.
The images are shown in figure 7. The parameters of the respective algorithms were adjusted
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Fig. 5. Sharpness reduction as measured by the full-width-half-maximum reduction
(FWHMred) plotted against noise reduction as measured by the signal-to-noise gain
(SNRgain) for 4 frames and 5 wavelet levels using the wavelet multiframe noise reduc-
tion method. Results are shown for: Significance weight (parameterk varied) and discrete
stationary wavelet transform with Haar wavelets (DSWT); significance weight (parameter
k varied) and dual tree complex wavelet transformation (DTCWT); correlation weight (pa-
rameterp varied) and DSWT; correlation weight (parameterp varied) and DTCWT; combi-
nation of significance and correlation weight (parameterk andp∗ varied) and DSWT; com-
bination of significance and correlation weight (parameterk andp∗ varied) and DTCWT.

so that the SNRgain of all denoised images was roughly about 100%. At this high denoising
level, median filtering does remove details and weak edges are blurred (see figure 7b). The
standard wavelet hard thresholding with the DTCWT, as shown in figure 7c, is even more un-
pleasant to the observer, as the image already contains strong denoising artifacts. Together with
the quantitative results shown in section 3.2 we can conclude that the single frame denoising
with wavelet thresholding is only feasible for low amounts of noise reduction. The use of the
multiframe method and the significance weight alone also reaches the limit of its applicability
at an SNRgain of 100%, as derived from the quantitative results. Very small wavelet artifacts
are visible. Compared to the average image in figure 7a, the speckle reduction, however, is
clearly observeable, as the large speckle grains in the average image became much finer and
evenly distributed. This behaviour remains intact in the wavelet multiframe results with the
combination weight shown in figure 7e. The noise reduction is very strong, while the blood
vessel wall shown in the magnification is still perfectly intact, better than in result of the signif-
icance weight. In addition, no wavelet artifacts can be observed, even at this high level of noise
reduction.
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Multiframe Significance DSWT 8 Frames
Multiframe Combination DSWT 8 Frames
Soft Tresholding DSWT 8 Frames
Hard Tresholding DTCWT 8 Frames
Median 8 Frames
Averaging compared to 8 Frames

Fig. 6. Sharpness reduction as measured by the full-width-half-maximum reduction
(FWHMred) plotted against noise reduction as measured by the signal-to-noise gain
(SNRgain) for 8 framesand 5 wavelet levels. Results are shown for: Wavelet soft thresh-
olding with Haar wavelets and the discrete stationary wavelet transform (DSWT) (thresh-
old varied); wavelet hard thresholding with dual tree complex wavelet transformation
(DTCWT) (threshold varied); wavelet multiframe denoising with significance weight (pa-
rameterk varied); wavelet multiframe denoising with a combination of significance and
correlation weight (parameterk andp∗ varied); median filtering (window size of 3×3 and
5×5 pixels). Additionaly, the results averaging of up to 40 frames are shown were an av-
erage of 8 frames holds as a reference. The results of averaging 16, 24, and 32 frames are
marked with dots.
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(a)

(b)

(c)

(d)

(e)

Fig. 7. Result examples from the pig eye dataset, generated from the same 8 randomly
selected frames: (a) Average. (b - e) Denoising results. Parameters for the methods were
adjusted so that the SNRgain was roughly 100%. (b) Median filtering with a window size of
5×5 on the average of 8 frames. (c) Wavelet hard thresholding with dual tree wavelet on
the average of the 8 frames. (d) Wavelet multiframe denoising using the significance weight
with Haar wavelets. (e) Wavelets multiframe denoising using the combined significance and
correlation weight with Haar wavelets.



Table 1. Quantitative evaluation results of the different denoising methods. The parameters
wereadjusted so that the signal-to-noise-ratio gain (SNRgain) was about 100%, with the
exception of the wavelet soft thresholding using the Haar wavelet, where a SNRgain of 100
can not be achieved due to artifact generation.

Method Wavelet Levels # Frames SNRgain[%] FWHM red[%]
Averaging - - 8 0 0
Averaging - - 29 100 8.3
Median Filtering - - 8 96.3 18.6
Soft Thresholding Haar 5 8 75.1 28.7
Hard Thresholding Dual Tree 5 8 105.8 18.3
Median Filtering - - 4 103.6 16.7
Soft Thresholding Haar 5 4 75.3 22.3
Hard Thresholding Dual Tree 5 4 101.0 12.2
Significance Weight Haar 5 8 109.6 13.8
Significance Weight Dual Tree 5 8 106.0 40.7
Correlation Weight Haar 5 8 107.2 12.9
Correlation Weight Dual Tree 5 8 98.8 11.3
Weight Combination Haar 5 8 101.2 10.5
Weight Combination Dual Tree 5 8 99.6 10.7
Weight Combination Haar 3 8 102.4 13.71
Weight Combination Haar 4 8 99.9 11.9
Weight Combination Haar 5 4 99.4 4.6
Weight Combination Dual Tree 5 4 102.2 6.1

Applied on in-vivo data, the observations stay the same, as shown in figure 8. The parameters
for the algorithms were the same as the ones in the quantitative evaluation, where a SNRgain of
roughly 100% was achieved for 4 frames (see table 1). Again, the median filter removes details
and the single frame wavelet thresholding produces a large amount of artifacts. The multiframe
method significantly lowers the noise in the background and in homogeneous regions inside the
retinal layers, while preserving all edges and details of the retinal structure.

4. Summary and Conclusion

We presented a denoising method, that uses the single captures as input instead of the average
of multiple frames, as is common in OCT processing today. The single frames are wavelet
transformed, and on the transformed data weights are computed. We proposed two different
weights. A significance weight, that determines if noise is locally present and a correlation
weight, that determines if structure is present within a local neighborhood. A combination
of these weights is also possible. The wavelet detail coefficients are scaled with the weights,
averaged and transformed back.

A quantitative evaluation showes that the proposed method is capable of suppressing noise
better than median filtering or single frame wavelet denoising on the averaged data. The amount
of noise reduction can be adjusted with parameters. A signal-to-noise gain of 101.2% leads to
a sharpness reduction measured by full-width-half-maximum reduction of 10.5%. This is only
slightly larger than a full-width-half-maximum reduction of 8.3% when averaging 29 frames
instead of 8, where a comparable signal-to-noise gain of 100% is achieved. A visual inspection
of denoised images from a pig eye ex-vivo and in-vivo human retina scans shows that the
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(a) (b)

(c) (d)

Fig. 8. Result examples from the human eye fundus dataset: (a) Average of 4 frames. (b -
d) Denoising results. Parameters for the methods were adjusted such that the SNRgain was
roughly 100%. (b) Median filtering on the average of 4 frames. (c) Wavelet hard threshold-
ing with dual tree wavelet on the average of 4 frames. (d) Wavelets multiframe denoising
using the combined significance and correlation weight with Haar wavelets.

method reduces noise effectively without degrading structure or generating denoising artifacts.
At the shown noise reduction level, this could not be achieved with single frame denoising
methods.

The proposed algorithm is applicable in OCT imaging in a clinical setting where the acqui-
sition of a large number of frames for averaging is not possible, for example in elderly patients
or patients with severe eye diseases, but where a high quality result is desired. The main appli-
cation area from our point of view is image preprocessing, for example in the segmentation of
retinal layers, as the noise on the images is effectively suppressed without degrading structural
information severly. Other applications or automated computations that use multiframe OCT
data as input may also benefit from the ideas presented in this work.
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