Europe PMC
Nothing Special   »   [go: up one dir, main page]

Europe PMC requires Javascript to function effectively.

Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please turn on Javascript support in your web browser and reload this page.

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Interleukin-11 (IL-11) is a bone marrow (BM) stromal-derived growth factor that has been shown to stimulate murine myeloid and lymphoid cells both in vitro and in vivo and to inhibit adipogenesis in a murine fibroblast cell line. We have studied the effects of IL-11 on highly purified human BM stem and progenitor cells and on human long-term marrow cultures (LTMC). Adipocyte differentiation is an integral component of murine and human LTMC. IL-11 stimulates myeloid growth as a single cytokine when added to highly enriched CD34+, HLA-DR+ bone marrow cells. IL-11 stimulated no growth in the more primitive CD34+, HLA-DR- population even in the presence of additional cytokines. IL-11 addition to human LTMC resulted in the expansion of myeloid and mixed, but not erythroid, progenitor populations. IL-11 dramatically increased the adherent cell populations, including both stromal cells and macrophages. Treated cultures also showed marked inhibition of fat accumulation in the adherent cells due in part to a block in the differentiation of preadipocytes to adipocytes, as shown by RNA analysis using adipocyte-specific markers. These data show that IL-11 stimulates a more differentiated, although multipotential, progenitor cell in human BM and that LTMC provide a useful model for studying the effects of this cytokine in the context of the hematopoietic microenvironment.

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Article citations


Go to all (58) article citations

Funding 


Funders who supported this work.

NHLBI NIH HHS (2)