Europe PMC
Nothing Special   »   [go: up one dir, main page]

Europe PMC requires Javascript to function effectively.

Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please turn on Javascript support in your web browser and reload this page.

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Background

Bloodstream infections are a major cause of death with increasing incidence and severity. Blood cultures are still the reference standard for microbiological diagnosis, but are rather slow. Molecular methods can be used as add-on complementary assays. They can be useful to speed up microbial identification and to predict antimicrobial susceptibility, applied to direct blood samples or positive blood cultures.

Aim

To review recent developments in molecular-based diagnostic platforms used for the identification of bloodstream infections, with a focus on assays performed directly on blood samples and positive blood cultures.

Sources

Peer reviewed articles, conference abstracts, and manufacturers' websites.

Content

We give an update on recent developments of molecular methods in diagnosing BSIs. We first describe the currently available molecular methods to be used for positive blood cultures including: a) in situ hybridization-based methods; b) DNA-microarray-based hybridization technology; c) nucleic acid amplification-based methods; and d) combined methods. Subsequently, molecular methods applied directly to whole blood samples are discussed, including the use of nucleic acid amplification-based methods, T2 magnetic resonance-based methods, and metagenomics for diagnosing BSIs.

Implications

Advances in molecular-based methods complementary to conventional blood culture diagnostics and antimicrobial stewardship programmes may optimize infection management by allowing rapid identification of pathogens and relevant antimicrobial resistance genes. Rapid diagnosis of the causing microorganism and relevant resistance determinants is important for early administration and modification of appropriate antimicrobial therapy. Ultimately, this may lead to improved quality and cost-effectiveness of health care, as well as reduced antimicrobial resistance selection.

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/42161094
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/42161094

Article citations


Go to all (88) article citations