Europe PMC
Nothing Special   »   [go: up one dir, main page]

Europe PMC requires Javascript to function effectively.

Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please turn on Javascript support in your web browser and reload this page.

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


RAS is a molecular switch that regulates a large number of pathways through interactions with many effector proteins. Most RAS/effector complexes are short-lived, demonstrating fast association and fast dissociation rate and Kds ranging from 10(-8)-10(-5) M, compatible with the signaling function of these interactions in the cell. RAS effectors share little sequence homology but all contain an RAS binding domain that exhibits ubiquitin fold. All effectors bind to the same epitope on RAS by forming an intermolecular beta sheet and creating a number of favorable hydrogen bonds and salt bridges across the binding interface. Several hot-spots on both RAS and effector molecules constitute a general recognition mode. RAS/effector interactions occur only when RAS is found in the active, GTP-bound state, and are disrupted upon GTP hydrolysis, most probably due to increased flexibility of the RAS molecule. Recent NMR studies demonstrate how in the presence of multiple binding partners, RAS prefers certain effectors to others. The hierarchy of these interactions could be altered for RAS oncogenic mutants, thus perturbing the network of the downstream signaling. Insights obtained through biophysical and structural studies of effectors interacting with RAS and its mutants establish the basic principles that could be used for designing drugs in RAS-associated diseases.

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.2174/1389557515666151001141838

Supporting
Mentioning
Contrasting
0
28
0

Article citations


Go to all (17) article citations