Europe PMC
Nothing Special   »   [go: up one dir, main page]

Europe PMC requires Javascript to function effectively.

Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please turn on Javascript support in your web browser and reload this page.

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Objectives

Methicillin-resistant Staphylococcus aureus (MRSA) infection is increasing and causing global concern. The mechanism of MRSA resistance to amikacin is poorly understood. We report on the first matched-pair study to reveal that the phenotypic cell wall thickening of MRSA is associated with adaptive resistance to amikacin.

Methods

Two MRSA strains (CY001 and CY002) were isolated from blood and synovial fluid samples, respectively, from a 12-year-old male patient with osteomyelitis. The strains were subjected to a matched-pair study, including antimicrobial agent susceptibility determination, molecular typing, morphological observation and in vitro resistance induction.

Results

Both strains are Panton-Valentine leucocidin-positive, multilocus sequence type 59, staphylococcal cassette chromosome mec type IV and spa type 437 MRSA with identical PFGE profiles. The drug susceptibility spectra of the two isolates are similar. However, CY001 is resistant to amikacin (CY001-AMI(R); MIC = 64 mg/L), contrary to the susceptible CY002 (CY002-AMI(S); MIC = 8 mg/L). CY001-AMI(R) may have developed adaptive resistance, because it lacks aminoglycoside-modifying enzymes and has an altered growth curve. Interestingly, CY001-AMI(R) has a thicker cell wall (36.43 ± 4.25 nm) than CY002-AMI(S) (18.15 ± 3.74 nm) in the presence of amikacin at its MIC. The thickened cell wall can also be observed in an in vitro-induced strain (CY002-AMI(R)) in the presence of amikacin at its MIC (36.78 ± 3.41 nm); this strain was obtained by gradually increasing the amount of amikacin. However, the cell wall-thickened strains cultured in the presence of amikacin are still susceptible to vancomycin.

Conclusions

Cell wall thickening is associated with adaptive resistance in MRSA and alternative antibiotics can be used to treat patients when adaptive resistance to amikacin has developed.

References 


Articles referenced by this article (26)


Show 10 more references (10 of 26)

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/1393186
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/1393186

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1093/jac/dks522

Supporting
Mentioning
Contrasting
3
46
0

Article citations


Go to all (33) article citations