Europe PMC
Nothing Special   »   [go: up one dir, main page]

Europe PMC requires Javascript to function effectively.

Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please turn on Javascript support in your web browser and reload this page.

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Single-particle cryo-electron microscopy (cryo-EM) has become an important tool to determine the structure of large biomolecules and assemblies thereof. However, the achievable resolution varies considerably over a wide range of about 3.5-20 Å. The interpretation of these intermediate- to low-resolution density maps in terms of atomic models is a big challenge and an area of active research. Here, we present our real-space structure refinement program DireX, which was developed primarily for cryo-EM-derived density maps. The basic principle and its main features are described. DireX employs Deformable Elastic Network (DEN) restraints to reduce overfitting by decreasing the effective number of degrees of freedom used in the refinement. Missing or reduced density due to flexible parts of the protein can lead to artifacts in the structure refinement, which is addressed through the concept of restrained grouped occupancy refinement. Furthermore, we describe the performance of DireX in the 2010 Cryo-EM Modeling Challenge, where we chose six density maps of four different proteins provided by the Modeling Challenge exemplifying typical refinement results at a large resolution range from 3 to 23 Å.

References 


Articles referenced by this article (50)


Show 10 more references (10 of 50)

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Article citations


Go to all (37) article citations