Europe PMC
Nothing Special   »   [go: up one dir, main page]

Europe PMC requires Javascript to function effectively.

Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please turn on Javascript support in your web browser and reload this page.

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Objective

Glycogen synthase kinase 3β (GSK-3) regulates the phosphorylation and subsequent degradation of β-catenin, thereby preventing aberrant activation of the canonical Wnt pathway. A study was undertaken to define the role of GSK-3 in fibroblast activation and in experimental models of systemic sclerosis (SSc).

Methods

siRNA and specific inhibitors were used to inhibit GSK-3 in cultured fibroblasts and in mice. Activation of the canonical Wnt signalling was analysed by determining the levels of nuclear β-catenin and by measuring the mRNA levels of the Wnt target gene Axin2. The effects of GSK-3 on the release of collagen were evaluated in human dermal fibroblasts and in the mouse model of bleomycin-induced skin fibrosis in tight-skin-1 (tsk-1) mice.

Results

Targeting GSK-3 potently activated the canonical Wnt pathway in fibroblasts in vitro and in vivo. Inactivation of GSK-3 dose-dependently stimulated the release of collagen from cultured fibroblasts in a β-catenin-dependent manner and further resulted in progressive accumulation of collagen and dermal thickening in mice. Inhibition of GSK-3 aggravated experimental fibrosis in bleomycin-challenged mice and in tsk-1 mice.

Conclusion

Inhibition of GSK-3 activates the canonical Wnt pathway in fibroblasts, stimulates the release of collagen from fibroblasts, exacerbates experimental fibrosis and is sufficient to induce fibrosis. GSK-3 is therefore a key regulator of the canonical Wnt signalling in fibroblasts and inhibition of GSK-3 results in fibroblast activation and increased release of collagen.

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/49776161
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/49776161

Article citations


Go to all (63) article citations

Data