Europe PMC
Nothing Special   »   [go: up one dir, main page]

Europe PMC requires Javascript to function effectively.

Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please turn on Javascript support in your web browser and reload this page.

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


We tested a hypothesis that activation of growth-promoting pathways is required for cellular senescence. In the presence of serum, induction of p21 caused senescence, characterized by beta-Galactosidase staining, cell hypertrophy, increased levels of cyclin D1 and active TOR (target of rapamycin, also known as mTOR). Serum starvation and rapamycin inhibited TOR and prevented the expression of some senescent markers, despite high levels of p21 and cell cycle arrest. In the presence of serum, p21-arrested cells irreversibly lost proliferative potential. In contrast, when cells were arrested by p21 in the absence of serum, they retained the capacity to resume proliferation upon termination of p21 induction. In normal human cells such as WI38 fibroblasts and retinal pigment epithelial (RPE) cells, serum starvation caused quiescence, which was associated with low levels of cyclin D1, inactive TOR and slim-cell morphology. In contrast, cellular senescence with high levels of TOR activity was induced by doxorubicin (DOX), a DNA damaging agent, in the presence of serum. Inhibition of TOR partially prevented senescent phenotype caused by DOX. Thus growth stimulation coupled with cell cycle arrest leads to senescence, whereas quiescence (a condition with inactive TOR) prevents senescence.

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/88460919
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/88460919

Article citations


Go to all (243) article citations

Similar Articles