Europe PMC
Nothing Special   »   [go: up one dir, main page]

Europe PMC requires Javascript to function effectively.

Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please turn on Javascript support in your web browser and reload this page.

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Background

The plasma total and low-density lipoprotein-cholesterol (LDL-C) levels that are used as diagnostic criteria for familial hypercholesterolaemia (FH) probands in the general population are too stringent for use in relatives, given the higher prior probability of a first-degree relative being FH (50% vs. 1/500). Our objective was therefore to develop more appropriate LDL-C cutoffs to identify "affected" first-degree relatives found by cascade testing, to test their accuracy and utility in case identification, and to compare them with the published "Make early diagnosis to prevent disease" (MEDPED) cutoffs from the US.

Methods

Using a large, anonymised sample of genetically tested first-degree relatives of Netherlands FH probands (mutation carriers/non-carriers, n=825/2,469), age- and gender-specific LDL-C diagnostic cutoffs for first-degree relatives were constructed. These were used to test similar data from Denmark (n=160/161) and Norway (n=374/742).

Results

Gender-specific LDL-C diagnostic cutoffs were established for six different age groups, which achieved an overall accuracy (measured as Youden's index) of 0.53 in the Netherlands data, and performed significantly better amongst younger (<25 years) compared to older first-degree relatives (0.68 vs. 0.42 Youden's index, p<0.001). Compared with the Netherlands data, age- and gender-adjusted mean LDL-C levels were significantly higher (approximately 0.5 mmol/L) in the Denmark and Norway subjects for both mutation carriers and non-carriers. After adjusting for this difference, the LDL-C cut-offs showed a similar accuracy in identifying mutation carriers from Denmark (81%, range 78%-86%) and Norway (84%, range 82%-86%). Although the MEDPED cutoffs performed significantly worse than these for the Netherlands data (p<0.001), they performed equally well in overall accuracy for the Norwegian and Danish data, although the LDL-C cutoffs had a significantly higher sensitivity but lower specificity for all three countries.

Conclusions

The cutoffs developed here are designed to give the greatest overall accuracy when testing relatives of FH patients in the absence of a genetic diagnosis. They have a more balanced specificity and sensitivity than the MEDPED cutoffs that are designed to achieve higher specificity, which is more appropriate for cascade testing purposes. The data suggest that country-specific LDL-C cutoffs may lead to greater accuracy for identifying FH patients, but should be used with caution and only when a genetic diagnosis (DNA) is not available.

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/1992088
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/1992088

Article citations


Go to all (84) article citations

Funding 


Funders who supported this work.

British Heart Foundation (1)

National Institute for Health Research (NIHR)