Europe PMC
Nothing Special   »   [go: up one dir, main page]

Europe PMC requires Javascript to function effectively.

Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please turn on Javascript support in your web browser and reload this page.

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


In contrast to Ag-specific alphabeta T cells, gammadelta T cells can kill malignantly transformed cells in a manner that does not require the recognition of tumor-specific Ags. Although such observations have contributed to the emerging view that gammadelta T cells provide protective innate immunosurveillance against certain malignancies, particularly those of epithelial origin, they also provide a rationale for developing novel clinical approaches to exploit the innate antitumor properties of gammadelta T cells for the treatment of cancer. Using TRAMP, a transgenic mouse model of prostate cancer, proof-of-concept studies were performed to first establish that gammadelta T cells can indeed provide protective immunosurveillance against spontaneously arising mouse prostate cancer. TRAMP mice, which predictably develop prostate adenocarcinoma, were backcrossed with gammadelta T cell-deficient mice (TCRdelta(-/-) mice) yielding TRAMP x TCRdelta(-/-) mice, a proportion of which developed more extensive disease compared with control TRAMP mice. By extension, these findings were then used as a rationale for developing an adoptive immunotherapy model for treating prostate cancer. Using TRAMP-C2 cells derived from TRAMP mice (C57BL/6 genetic background), disease was first established in otherwise healthy wild-type C57BL/6 mice. In models of localized and disseminated disease, tumor-bearing mice treated i.v. with supraphysiological numbers of syngeneic gammadelta T cells (C57BL/6-derived) developed measurably less disease compared with untreated mice. Disease-bearing mice treated i.v. with gammadelta T cells also displayed superior survival compared with untreated mice. These findings provide a biological rationale for clinical trials designed to adoptively transfer ex vivo expanded autologous gammadelta T cells for the treatment of prostate cancer.

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Article citations


Go to all (80) article citations

Data