Europe PMC
Nothing Special   »   [go: up one dir, main page]

Europe PMC requires Javascript to function effectively.

Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please turn on Javascript support in your web browser and reload this page.

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


RUNX1 (AML1, CBFalpha2, PEBP2alphaB) is a transcription factor essential for the establishment of the hematopoietic stem cell. It is generally thought that RUNX1 exists as a monomer that regulates hematopoietic differentiation by interacting with tissue-specific factors and its DNA consensus through its N terminus. RUNX1 is frequently altered in human leukemia by gene fusions or point mutations. In general, these alterations do not affect the N terminus of the protein, and it is unclear how they consistently lead to hematopoietic transformation and leukemia. Here we report that RUNX1 homodimerizes through a mechanism involving C terminus-C terminus interaction. This RUNX1-RUNX1 interaction regulates the activity of the protein in reporter gene assays and modulates its ability to induce hematopoietic differentiation of hematopoietic cell lines. The promoters of genes regulated by RUNX1 often contain multiple RUNX1 binding sites. This arrangement suggests that RUNX1 could homodimerize to bring and hold together distant chromatin sites and factors and that if the dimerization region is removed by gene fusions or is altered by point mutations, as observed in leukemia, the ability of RUNX1 to regulate differentiation could be impaired.

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Article citations


Go to all (11) article citations

Funding 


Funders who supported this work.

NCI NIH HHS (1)

NHLBI NIH HHS (3)