Europe PMC
Nothing Special   »   [go: up one dir, main page]

Europe PMC requires Javascript to function effectively.

Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please turn on Javascript support in your web browser and reload this page.

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


The RAS/BRAF/MEK/ERK mitogen-activated protein kinase (MAPK) pathway is emerging as a key modulator of melanoma initiation and progression. However, a variety of clinical studies indicate that inhibiting the MAPK pathway is insufficient per se to effectively kill melanoma cells. Here, we report on a genetic and pharmacologic approach to identify survival factors responsible for the resistance of melanoma cells to MEK/ERK antagonists. In addition, we describe a new tumor cell-selective means to bypass this resistance in vitro and in vivo. By generating a panel of isogenic cell lines with specific defects in the apoptotic machinery, we found that the ability of melanoma cells to survive in the absence of functional MEK relies on an ERK-independent expression of the antiapoptotic factor Mcl-1 (and to a lesser extent, Bcl-x(L) and Bcl-2). Using computer-based modeling, we developed a novel Bcl-2 homology domain 3 (BH3) mimetic. This compound, named TW-37, is the first rationally designed small molecule with high affinity for Mcl-1, Bcl-x(L), and Bcl-2. Mechanistic analyses of the mode of action of TW-37 showed a synergistic tumor cell killing in the presence of MEK inhibitors. Importantly, TW-37 unveiled an unexpected role of the MAPK pathway in the control of reactive oxygen species (ROS). This function was critical to prevent the activation of proapoptotic functions of p53 in melanoma cells, but surprisingly, it was dispensable for normal melanocytes. Our results suggest that this MAPK-dependent ROS/p53 feedback loop is a point of vulnerability of melanoma cells that can be exploited for rational drug design.

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/33009056
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/33009056

Article citations


Go to all (101) article citations

Funding 


Funders who supported this work.

NCI NIH HHS (4)

NIAMS NIH HHS (2)

NIDCD NIH HHS (1)

NIDCR NIH HHS (1)

NIGMS NIH HHS (1)