Europe PMC
Nothing Special   »   [go: up one dir, main page]

Europe PMC requires Javascript to function effectively.

Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please turn on Javascript support in your web browser and reload this page.

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Accumulating evidence suggests that E3 ubiquitin ligases play important roles in cancer development. In this article, we provide a comprehensive summary of the roles of the Nedd4-like family of E3 ubiquitin ligases in human cancer. There are nine members of the Nedd4-like E3 family, all of which share a similar structure, including a C2 domain at the N-terminus, two to four WW domains in the middle of the protein, and a homologous to E6-AP COOH terminus domain at the C-terminus. The assertion that Nedd4-like E3s play a role in cancer is supported by the overexpression of Smurf2 in esophageal squamous cell carcinoma, WWP1 in prostate and breast cancer, Nedd4 in prostate and bladder cancer, and Smurf1 in pancreatic cancer. Because Nedd4-like E3s regulate ubiquitin-mediated trafficking, lysosomal or proteasomal degradation, and nuclear translocation of multiple proteins, they modulate important signaling pathways involved in tumorigenesis like TGFbeta, EGF, IGF, VEGF, SDF-1, and TNFalpha. Additionally, several Nedd4-like E3s directly regulate various cancer-related transcription factors from the Smad, p53, KLF, RUNX, and Jun families. Interestingly, multiple Nedd4-like E3s show ligase independent function. Furthermore, Nedd4-like E3s themselves are frequently regulated by phosphorylation, ubiquitination, translocation, and transcription in cancer cells. Because the regulation and biological output of these E3s is such a complex process, study of the role of these E3s in cancer development poses some challenges. However, understanding the oncogenic potential of these E3s may facilitate the identification and development of biomarkers and drug targets in human cancer.

References 


Articles referenced by this article (166)


Show 10 more references (10 of 166)

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/3582113
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/3582113

Article citations


Go to all (145) article citations

Other citations

Data