Europe PMC
Nothing Special   »   [go: up one dir, main page]

Europe PMC requires Javascript to function effectively.

Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please turn on Javascript support in your web browser and reload this page.

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


The sodium- and chloride-dependent GABA transporters GABA transporter (GAT) 1 to 4 in the central nervous system enable efficient synaptic transmission by removing the neurotransmitter from the cleft. Taurine interacts only weakly with the GABA transporter GAT-4 (IC50 approximately 1.6 mM). Glutamate-61 is located in the conserved transmembrane domain I of GAT-4, whereas in the related taurine-transporter taurine transporter (TAUT), glycine occupies the equivalent position. [3H]GABA uptake by the GAT-4 E61G mutant becomes markedly more sensitive to inhibition by taurine (IC50 approximately 0.26 mM). Replacement of cysteine-94, located in the conserved transmembrane domain II of GAT-4, to its TAUT counterpart serine, results only in a modest increase in the ability of taurine to inhibit GABA uptake. However, introduction of glycine at this position decreases the IC50 for taurine by approximately 8-fold (IC50 approximately 0.20 mM). The inhibitory potency of taurine is inversely correlated with the volume of the side chain of the amino acid residue introduced at positions 61 and 94. It is striking that the IC50 for taurine of the E61G/C94G double mutant is decreased by approximately 35-fold (IC50 approximately 0.05 mM), and this inhibition of GABA transport is competitive. Changes in the inhibitory potency of the mutants described are also observed with beta-ala-nine and GABA, although they are much less pronounced. Our results suggest that determinants on transmembrane domains I and II can influence the specificity of the substrate binding pocket. The size of the side chain at positions 61 and 94 seems to determine the ability of substrate and substrate analogs to interact with the transporter.

References 


Articles referenced by this article (26)


Show 10 more references (10 of 26)

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Article citations


Go to all (20) article citations

Data