Europe PMC
Nothing Special   »   [go: up one dir, main page]

Europe PMC requires Javascript to function effectively.

Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please turn on Javascript support in your web browser and reload this page.

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


The c-Myc oncoprotein regulates transcription of genes that are associated with cell growth, proliferation and apoptosis. c-Myc levels are modulated by ubiquitin/proteasome-mediated degradation. Proteasome inhibition leads to c-Myc accumulation within nucleoli, indicating that c-Myc might have a nucleolar function. Here we show that the proteins c-Myc and Max interact in nucleoli and are associated with ribosomal DNA. This association is increased upon activation of quiescent cells and is followed by recruitment of the Myc cofactor TRRAP, enhanced histone acetylation, recruitment of RNA polymerase I (Pol I), and activation of rDNA transcription. Using small interfering RNAs (siRNAs) against c-Myc and an inhibitor of Myc-Max interactions, we demonstrate that c-Myc is required for activating rDNA transcription in response to mitogenic signals. Furthermore, using the ligand-activated MycER (ER, oestrogen receptor) system, we show that c-Myc can activate Pol I transcription in the absence of Pol II transcription. These results suggest that c-Myc coordinates the activity of all three nuclear RNA polymerases, and thereby plays a key role in regulating ribosome biogenesis and cell growth.

References 


Articles referenced by this article (30)


Show 10 more references (10 of 30)

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/101878747
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/101878747

Article citations


Go to all (307) article citations

Data 


Similar Articles 


To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.