Europe PMC
Nothing Special   »   [go: up one dir, main page]

Europe PMC requires Javascript to function effectively.

Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please turn on Javascript support in your web browser and reload this page.

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Objective

The gut microbiota may contribute to the onset and maintenance of irritable bowel syndrome (IBS). In this study, the microbiotas of patients suffering from IBS were compared with a control group devoid of gastrointestinal (GI) symptoms.

Methods

Fecal microbiota of patients (n = 27) fulfilling the Rome II criteria for IBS was compared with age- and gender-matched control subjects (n = 22). Fecal samples were obtained at 3 months intervals. Total bacterial DNA was analyzed by 20 quantitative real-time PCR assays covering approximately 300 bacterial species.

Results

Extensive individual variation was observed in the GI microbiota among both the IBS- and control groups. Sorting of the IBS patients according to the symptom subtypes (diarrhea, constipation, and alternating predominant type) revealed that lower amounts of Lactobacillus spp. were present in the samples of diarrhea predominant IBS patients whereas constipation predominant IBS patients carried increased amounts of Veillonella spp. Average results from three fecal samples suggested differences in the Clostridium coccoides subgroup and Bifidobacterium catenulatum group between IBS patients (n = 21) and controls (n = 15). Of the intestinal pathogens earlier associated with IBS, no indications of Helicobacter spp. or Clostridium difficile were found whereas one case of Campylobacter jejuni was identified by sequencing.

Conclusions

With these real-time PCR assays, quantitative alterations in the GI microbiota of IBS patients were found. Increasing microbial DNA sequence information will further allow designing of new real-time PCR assays for a more extensive analysis of intestinal microbes in IBS.

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/72666842
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/72666842

Article citations


Go to all (433) article citations