Europe PMC
Nothing Special   »   [go: up one dir, main page]

Europe PMC requires Javascript to function effectively.

Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please turn on Javascript support in your web browser and reload this page.

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Hypertonic saline (HS) is used in sputum induction studies. However, little is known about the physiological effects of HS on human airways in vivo. The present study takes advantage of the fact that the airway effects of topical challenges may be accurately examined in the readily accessible nasal airway. The present study specifically examines whether exposure to HS affects histamine challenge-induced exudation of plasma (alpha2-macroglobulin) and methacholine-induced secretion of mucin (fucose). Isotonic saline and HS (27 and 45 g x L(-1)), with and without concomitant histamine challenges, and with and without preceding methacholine challenges, were administered onto the nasal mucosa in 16 healthy subjects. Lavage fluid levels of alpha2-macroglobulin and fucose were analysed. Histamine produced a significant mucosal output of plasma (alpha2-macroglobulin). HS itself did not evoke exudation of alpha2-macroglobulin, but it significantly increased the plasma exudation effect of histamine. Methacholine produced a significant nasal mucosal output of fucose. HS also increased the mucin secretion (fucose), and it enhanced the secretory effect of methacholine. The authors concluded that hypertonic saline alone evokes mucinous secretion in human nasal airways in vivo and that it also enhances the exudative and secretory effects of histamine and methacholine, respectively. Through different mechanisms the HS exposure may also improve the recovery of soluble indices in human nasal airways. Whether or not the present findings are translatable to human bronchial airways remains to be examined.

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1183/09031936.03.00290303

Supporting
Mentioning
Contrasting
0
13
0

Article citations


Go to all (12) article citations