Europe PMC
Nothing Special   »   [go: up one dir, main page]

Europe PMC requires Javascript to function effectively.

Either your web browser doesn't support Javascript or it is currently turned off. In the latter case, please turn on Javascript support in your web browser and reload this page.

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


The life-threatening complications of sepsis in humans are elicited by infection with Gram-negative as well as Gram-positive bacteria. Recently, lipopolysaccharide (LPS), a major biologically active agent of Gram-negative bacteria, was shown to mediate cellular activation by a member of the human Toll-like receptor family, Toll-like receptor (TLR) 2. Here we investigate the mechanism of cellular activation by soluble peptidoglycan (sPGN) and lipoteichoic acid (LTA), main stimulatory components of Gram-positive bacteria. Like LPS, sPGN and LTA bind to the glycosylphosphatidylinositol-anchored membrane protein CD14 and induce activation of the transcription factor NF-kappaB in host cells like macrophages. We show that whole Gram-positive bacteria, sPGN and LTA induce the activation of NF-kappaB in HEK293 cells expressing TLR2 but not in cells expressing TLR1 or TLR4. The sPGN- and LTA-induced NF-kappaB activation was not inhibited by polymyxin B, an antibiotic that binds and neutralizes LPS. Coexpression together with membrane CD14 enhances sPGN signal transmission through TLR2. In contrast to LPS signaling, activation of TLR2 by sPGN and LTA does not require serum. These findings identify TLR2 as a signal transducer for sPGN and LTA in addition to LPS.

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/16657484
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/16657484

Article citations


Go to all (990) article citations

Data 


Funding 


Funders who supported this work.

NIAID NIH HHS (1)