Binomial Transform of the Generalized \(k\)-Fibonacci Numbers
DOI:
https://doi.org/10.26713/cma.v10i3.1221Keywords:
\(k\)-Fibonacci numbers, Generalization of the \(k\)-Fibonacci numbers, Generating function, Binomial transformAbstract
We recall the concept and some properties of the generalized \(k\)-Fibonacci numbers and then apply the binomial transform to these sequences. As consequence, we obtain new integer sequences related to the generalized \(k\)-Fibonacci numbers. Finally, we find the recurrence relation of these new sequences and the formulas for their sums.
Downloads
References
P. Barry, On integer-sequence-based constructions og generalized pascal triangles, Journal of Integer Sequences 9, Article 06.2.4 (2006).
A. Benjamin, The Lucas triangle recounted, Applications of Fibonacci Numbers, Vol. 11, W. Webb (ed.), Kluwer Academic Publishers (2008), URL: https://www.math.hmc.edu/~benjamin/papers/LucasTriangle.pdf.
S. Falcón, On the k-Lucas Numbers, Int. J. Contemp. Math. Sciences 6(21) (2011), 1039 – 1050.
S. Falcón, On the k-Lucas triangle and its relationship with the k-Lucas numbers, J. Math. Comput. Sci. 6(3) (2012), 425 – 434.
S. Falcón, Generalized (k, r)-Fibonacci numbers, General Mathematics Notes 25(2) (2014), 148 – 158.
S. Falcón and A. Plaza, Binomial transforms of the k-Fibonacci sequence, International Journal of Nonlinear Sciences & Numerical Simulation 10(11-12) (2009), 1527 – 1538, DOI: 10.1515/IJNSNS.2009.10.11-12.1527.
S. Falcón and A. Plaza, On the Fibonacci k-numbers, Chaos, Solitons & Fractals (2006), DOI: 10.1016/j.chaos.2006.09.022, DOI: 10.1016/j.chaos.2006.09.022.
S. Falcón and A. Plaza, The k-Fibonacci sequence and the Pascal 2-triangle, Chaos, Solit. & Fract. 33(1) (2007), 38 – 49, DOI: 10.1016/j.chaos.2006.10.022.
S. Falcón and A. Plaza, On k-Fibonacci numbers of arithmetic indexes, Applied Mathematics and Computation 208 (2009), 180 – 185, DOI: 10.1016/j.amc.2008.11.031.
S. Falcón and A. Plaza, Binomial transforms of the k-Fibonacci sequence, International Journal of Nonlinear Science and Numerical Simulation 10(11-12) (2009), 1527 – 1538, DOI: 10.1515/IJNSNS.2009.10.11-12.1527.
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison Wesley Publishing Co. (1998).
V. E. Hogat, Fibonacci and Lucas Numbers, Houghton-Mifflin, Palo Alto (1969).
A. F. Horadam, A generalized Fibonacci sequence, Math Mag. 68 (1961), 455 – 459, DOI: 10.1080/00029890.1961.11989696.
N. J. A. Sloane, The On-line Encyclopedia of Integer Sequences, pp. 1– 9, https://arxiv.org/abs/math/0312448 (2006).
N. Robbins, Vieta's triangular array and a related family of polynomials, Internat. J. Mayth. & Math. Sci. 14(2) (1991), 239 – 244, DOI: 10.1155/S0161171291000261.
A. G. Shanon and A. F. Horadam, Generalized Fibonacci triples, Amer. Math. Monthly 80 (1973), 187 – 190, DOI: 10.1080/00029890.1973.11993253.
V. W. Spinadel, The family of metallic means, Vis. Math. 1(3), available from http://members.tripod.com/vismath/ (1999).
I. Wloch, U. Bednarz, D. Bród, A. Wloch and M. Wolowiecz-Musial, On a new type of distance Fibonacci numbers, Discrete Applied Mathematics 161 (2013), 2695 – 2701, DOI: 10.1016/j.dam.2013.05.029.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a CCAL that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.