Binomial Transform of the Generalized \(k\)-Fibonacci Numbers

Authors

  • Sergio Falcón Department of Mathematics, University of Las Palmas de Gran Canaria, 35017 – Las, Palmas de Gran Canaria

DOI:

https://doi.org/10.26713/cma.v10i3.1221

Keywords:

\(k\)-Fibonacci numbers, Generalization of the \(k\)-Fibonacci numbers, Generating function, Binomial transform

Abstract

We recall the concept and some properties of the generalized \(k\)-Fibonacci numbers and then apply the binomial transform to these sequences. As consequence, we obtain new integer sequences related to the generalized \(k\)-Fibonacci numbers. Finally, we find the recurrence relation of these new sequences and the formulas for their sums.

Downloads

Download data is not yet available.

References

P. Barry, On integer-sequence-based constructions og generalized pascal triangles, Journal of Integer Sequences 9, Article 06.2.4 (2006).

A. Benjamin, The Lucas triangle recounted, Applications of Fibonacci Numbers, Vol. 11, W. Webb (ed.), Kluwer Academic Publishers (2008), URL: https://www.math.hmc.edu/~benjamin/papers/LucasTriangle.pdf.

S. Falcón, On the k-Lucas Numbers, Int. J. Contemp. Math. Sciences 6(21) (2011), 1039 – 1050.

S. Falcón, On the k-Lucas triangle and its relationship with the k-Lucas numbers, J. Math. Comput. Sci. 6(3) (2012), 425 – 434.

S. Falcón, Generalized (k, r)-Fibonacci numbers, General Mathematics Notes 25(2) (2014), 148 – 158.

S. Falcón and A. Plaza, Binomial transforms of the k-Fibonacci sequence, International Journal of Nonlinear Sciences & Numerical Simulation 10(11-12) (2009), 1527 – 1538, DOI: 10.1515/IJNSNS.2009.10.11-12.1527.

S. Falcón and A. Plaza, On the Fibonacci k-numbers, Chaos, Solitons & Fractals (2006), DOI: 10.1016/j.chaos.2006.09.022, DOI: 10.1016/j.chaos.2006.09.022.

S. Falcón and A. Plaza, The k-Fibonacci sequence and the Pascal 2-triangle, Chaos, Solit. & Fract. 33(1) (2007), 38 – 49, DOI: 10.1016/j.chaos.2006.10.022.

S. Falcón and A. Plaza, On k-Fibonacci numbers of arithmetic indexes, Applied Mathematics and Computation 208 (2009), 180 – 185, DOI: 10.1016/j.amc.2008.11.031.

S. Falcón and A. Plaza, Binomial transforms of the k-Fibonacci sequence, International Journal of Nonlinear Science and Numerical Simulation 10(11-12) (2009), 1527 – 1538, DOI: 10.1515/IJNSNS.2009.10.11-12.1527.

R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison Wesley Publishing Co. (1998).

V. E. Hogat, Fibonacci and Lucas Numbers, Houghton-Mifflin, Palo Alto (1969).

A. F. Horadam, A generalized Fibonacci sequence, Math Mag. 68 (1961), 455 – 459, DOI: 10.1080/00029890.1961.11989696.

N. J. A. Sloane, The On-line Encyclopedia of Integer Sequences, pp. 1– 9, https://arxiv.org/abs/math/0312448 (2006).

N. Robbins, Vieta's triangular array and a related family of polynomials, Internat. J. Mayth. & Math. Sci. 14(2) (1991), 239 – 244, DOI: 10.1155/S0161171291000261.

A. G. Shanon and A. F. Horadam, Generalized Fibonacci triples, Amer. Math. Monthly 80 (1973), 187 – 190, DOI: 10.1080/00029890.1973.11993253.

V. W. Spinadel, The family of metallic means, Vis. Math. 1(3), available from http://members.tripod.com/vismath/ (1999).

I. Wloch, U. Bednarz, D. Bród, A. Wloch and M. Wolowiecz-Musial, On a new type of distance Fibonacci numbers, Discrete Applied Mathematics 161 (2013), 2695 – 2701, DOI: 10.1016/j.dam.2013.05.029.

Downloads

Published

30-09-2019
CITATION

How to Cite

Falcón, S. (2019). Binomial Transform of the Generalized \(k\)-Fibonacci Numbers. Communications in Mathematics and Applications, 10(3), 643–651. https://doi.org/10.26713/cma.v10i3.1221

Issue

Section

Research Article