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Abstract. We use a Spatial Light Modulator (SLM) to produce arrays
of Bessel beams by using multiple axicon phase-masks on the SLM. This
approach utilises the whole of the SLM, rather than just a thin annular
region (which is the case if the SLM is in the far-field of the generated
Bessel beams). Using the whole SLM rather than just an annular region
means that the required intensity on the SLM is an order of magnitude
lower for a given power in the Bessel beams. Spreading the power over
the whole SLM is important for high-power applications such as laser
micromachining. We allow the axicons to overlap and interfere in the
hologram, so the axial length of the Bessel beam core is maintained as
we add more beams to the array.

1 Introduction

For many applications in modern science and technology it is a requirement to shape
the cross section of a laser beam. Such applications range from laser machining and
structured light imaging through to the manipulation of microscopic objects in optical
tweezers [1-3]. For an obvious route to beam shaping, one need look no further than a
standard lecture theatre where the display of the lecture notes uses a data projector.
Most data projectors work as pixellated devices where the intensity of the reflected
light can be controlled for each pixel, an imaging lens then relays this image to the
screen. Complicated, high-resolution, patterns can be created in this way but there
are two very obvious drawbacks. Firstly, if the desired pattern is highly localised, e.g.
a single small spot, then the process is very inefficient; the spot is formed simply
by blocking most of the light. Secondly, if the desired pattern is described not only
by the intensity of the light but by its phase as well then an intensity modulation
of the projected light gives no obvious mechanism for achieving it. Of course, if the
sole objective was to produce a single bright spot of light then this could have been
accomplished with high efficiency using a single lens of the appropriate focal length.
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Fig. 1. A holographic element can simulate many optical elements- for example here a
hologram (right) is used to independently steer two spots, which would otherwise require a
number of components (left).

Rather than create images using selective attenuation, the lens is an example
of a component that shapes the phase cross section of the light beam such that,
upon propagation, the desired pattern is obtained. Clearly, the incorporation of an
additional optical component such as a prism would also allow the focussed light
spot to be shifted in a lateral direction. Although a number of beam transformations
could be engineered by adding more optical components, this is not a useful approach
to general beam shaping. Rather than using refractive optics like lenses and prisms
it is possible to perform equivalent transformations using a single diffractive optical
element as illustrated in Fig. 1, and described in more detail in [4]. For example,
especially for monochromatic light, a lens can be replaced with a phase Fresnel lens
(i.e. phase shift @ens k,r? mod 27 where r is radial position and k. a constant), and
a prism can be replaced by a blazed diffraction grating (¢grating ¢ kzx mod 27 where
x is position and k, a constant, proportional to the deviation angle). More generally
the use of diffraction gratings to shape light beams is called “diffractive optics” or
“computer generated holography”. Although the study and use of diffractive optics
for shaping laser beams dates back many decades it is within the last 10 years that
interest in this approach has really exploded.

The dramatic increase in the uses of diffractive optics has been fuelled by two
technology advances. Firstly, as we shall see, calculation of the required design of
diffraction grating can be complicated and it is only in recent years that such cal-
culations can be completed at a high enough rate to make the process interactive.
Secondly, rather than implementing these designs by machining, photolithography,
or otherwise, to produce fixed components, a reconfigurable technology has become
available. Over the last decade a number of companies have developed technologies
for Spatial Light Modulators (SLMs), allowing arbitrary phase patterns to be applied
to a light beam. These devices comprise thin liquid crystal cells, where the applica-
tion of a voltage across the cell introduces a phase delay to the reflected light. Rather
than applying the same electric field (and hence the same phase change) across the
whole aperture, a desired phase structure can be created by varying the strength of
the electric field across the aperture of cell. Most commonly, this spatially varying
electric field is created by attaching the liquid crystal cell to a programmable, pixel-
lated CMOS array and using the whole device in reflection mode (which also doubles
the available phase shift). Typically, each pixel of the device can create a full 27
phase shift with video resolution and update rates. These programmable devices are
programmed as secondary monitors from the graphics card of a computer, where an
8-bit greyscale image gives 256 different phase levels.

When programmed in this way, the SLM is effectively acting as a complicated
diffraction grating which changes the phase of the reflected light beam such that upon
propagation its intensity and phase cross-section transforms into a specific pattern. In
essence the SLM is a computer controlled hologram, where the pattern is calculated
rather than produced photographically. For simplicity we will now refer to the SLM
programmed in this way as the hologram. This approach has a crucial advantage
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over an amplitude modulator such as a digital projector—for an image consisting
of a few bright points, the amplitude modulator must block most of the incoming
light, and thus achieves poor efficiency. However, the phase modulator can re-direct
the incoming light, so that all the available light is sent into the bright spots, thus
improving efficiency by an order of magnitude.

Having established that the technology exists whereby an arbitrary phase profile
can be imposed upon a reflected light beam, the question remains as to how the
required phase profile can be calculated in order to produce a beam which, upon
propagation, transforms into the desired shape. Firstly, it is possible to combine simple
linear and circular gratings to create laser beams that form an isolated spot or spots
in the far field, and these individual spots can be shaped in terms of their intensity
and/or phase. This algorithm is often referred to as “gratings and lenses” [2,5].

It is also possible to produce more complicated patterns using iterative Fourier
transform algorithms. This approach, first used by Gerchberg and Saxton [6] relies
upon the fact that the complex amplitude in a plane is related to that in the far-field
of that plane by a Fourier-transform. The intensity and phase structure produced in
the far field from any design hologram is obtained by taking the Fourier-transform
of the field immediately after the SLM. Conversely, the inverse Fourier-transform
maps back from the far-field to the plane of the hologram. By iterating between
these two planes, and replacing the intensity (but not the phase) each time with
the desired intensity, the hologram will converge on one which produces the desired
intensity pattern. However, the effectiveness of this algorithm is greatest when we
give it freedom to randomise the phase in the far-field. This is appropriate when
generating diffraction-limited spots but not when generating complex beams such as
Bessel beams, which have intensity as well as phase structure.

It is also possible to use the SLM in the image plane of the system, converting
phase to intensity modulation with Generalised Phase Contrast [7], or to project
patterns close to the SLM, in a Fresnel plane [8]. For the generation of our Bessel
beams we will work in this Fresnel configuration.

SLMs are also used for tasks other than beam shaping, for example optical image
processing [9,10], wavefront measurement and correction [11-14]. This versatility is a
key part of the SLM’s popularity as a scientific tool.

2 Creation of a single Bessel beam

Ideal Bessel beams are infinitely wide, propagation-invariant beams which, for the
lowest-order beams, have a bright central core. The finite Bessel beams used in lab-
oratory settings are usually generated with a conical refractive element known as an
axicon. The geometry of the Bessel beam generated by an axicon is shown for illus-
tration in Fig. 2 together with its structure in the far field (Fraunhofer) plane. The
Fourier transform of a non-diffracting Jy Bessel beam corresponds to an infinitely
thin ring whose radius © (defined in Fig. 2) is inversely proportional to the size of
the central bright spot. However, in the real case, because of the finite size of the in-
put laser beam on the axicon, the resulting far field image of the Bessel beam (more
correctly called Bessel-Gauss beam if the illuminating beam is Gaussian) has a well
defined width A®©. Thus, to generate such a beam in the far-field of an SLM, we must
display an annular aperture on the modulator.

A set-up with the SLM in the far-field has been used by Cizmar et al. at [15] in
order to produce Bessel beams. In their work, a phase mask of the Fourier transform
of a Bessel beam is introduced on the SLM where most of the beam is redirected to
the zero order, effectively applying a ring shaped amplitude mask. Then, the Bessel
beam is obtained by means of a Fourier transform (FT) using a lens. This achieves



/ldoc.rero.ch

http

axicon

skew angle (0)

Bessel zone

Fig. 2. An axicon produces a Bessel beam when illuminated with a plane wave. Insets show:
(a) the Bessel beam, which exists in the “Bessel zone”, shaded darker in the figure, and (b)

the far-field (Fraunhofer) diffraction pattern.
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Fig. 3. A hologram corresponding to the phase profile of an axicon produces a Bessel beam
close the SLM.

good control over the propagation parameters of the beam, and makes a very pure
Bessel mode. However, the annular aperture uses only a part of the incident beam,
placing an upper bound on efficiency of order 5% [15] if a Gaussian beam is used to
illuminate the hologram. This is based only on the area of the incident beam which
is used, and not on other inefficiencies in the system. It would be possible to improve
this using a glass axicon before the SLM to illuminate it with a ring-shaped beam
[16]. However this sacrifices much of the flexibility of using an SLM as it fixes the
size of the ring ® and hence the diameter of the core. We are also left with a very
concentrated light pattern on the SLM as the ring has a small area- this would be a
problem for laser micromachining applications, where high peak powers are used.

Another way of generating a Bessel beam is to directly mimic a glass axicon on
the SLM, as shown in Fig. 3. This produces a Bessel beam which starts immediately
after the plane of the SLM, i.e. the Fresnel configuration [8]. For a single beam, this
is equivalent to using the SLM as the axicon, and producing a beam as shown in
Fig. 2. The holograms have been computed in LabView using the phase profile of
an axicon, i.e. €97 where r is the radial distance from the centre of the axicon to
the respective pixel and k = 27/) is the wavenumber. © is the angle between rays
of light in the Bessel beam and the optic axis, related to the cone angle v of the
axicon by © = (ng, — 1)y where n,, is the axicon’s refractive index. It is possible
to add a diffraction grating to this phase structure to move the Bessel beam away
from the on-axis undiffracted light, in a similar manner to the “gratings and lenses”
algorithm described in [4]. By using the whole incident beam, we would expect to
improve the efficiency by at least a factor of ten compared to an annular aperture
masking a Gaussian beam.

3 Creation of an array of Bessel beams

To produce multiple spots with the SLM in the Fourier plane, we can display a holo-
gram which is the complex superposition of multiple plane waves [3,5,17]. However,
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Fig. 4. Holograms for two Bessel beams centred on different parts of the SLM (left) can be
combined to produce both beams from a single hologram (centre), by superposing the light
fields and extracting the phase. On the right is a hologram for a 3 x 3 array of Bessel beams,
generated by this method.

with the SLM placed closer to the target plane we must employ a different approach-
to translate a spot without changing its direction of propagation, we simply trans-
late the corresponding hologram on the SLM, and by including multiple, spatially
separate holograms we can create multiple spots [8]. Arrays of spatially separate axi-
con holograms have been used to generate arrays of Bessel beams [18]. However, the
drawback of this approach is that the aperture of each beam is relatively small- for
an n X n array, each spot only uses 1/n? of the available aperture. As the length of
a Bessel beam depends on cone angle © and aperture size 7, the length zp,. of the
“non-diffracting” central core of the beams is decreased by 1/n.

Our approach draws on both of the above techniques. We work in the Fresnel
regime, so as to use the whole area of the SLM, but we superpose the complex fields
from the axicons and allow them to overlap as shown in Fig. 4. This means that zy,.x
no longer decreases as 1/n, an advantage that becomes more important as the number
of spots in the array increases. It also allows beams to be placed much closer together
while maintaining long propagation distances. This helps to avoid non-uniformity in
the array due to the illumination becoming less bright near the edge of the hologram.

4 Experimental setup

The array of Bessel beams can be generated by summing the complex fields corre-
sponding to the different axicon masks of the array and then extracting the phase
of the resulting complex number. The experimental setup used is shown in Fig. 5.
The beam from a He-Ne laser was magnified 20 times by means of a two lens beam
expander in order to fill the whole area of the spatial light modulator. The SLM used
for the experiment was a PLUTO phase-only modulator (Holoeye, Germany) with a
resolution of 1920 x 1080 and a pixel pitch of 8 um. An imaging telescope (with two
lenses of focal length f3 = 20cm and f4 = 40 cm respectively) was built to image the
SLM plane onto a CCD camera, which could be moved on a translation stage along
the propagation direction in order to monitor the Bessel beam evolution.

5 Experimental results

Figure 6 shows the array of 3 x 3 Bessel beams generated as described above, recorded
on the CCD camera. The sequence shows the formation of the Bessel beams, how they
propagate diffraction free for a distance of about 9cm and how they start diffracting
again. For the given axicon phase mask used, and considering the parameters of our
imaging telescope and the CCD pixels dimensions, we can evaluate that the Bessel



/ldoc.rero.ch

http

Spatial Light Modulator

beam expander
(L1 & L2)

aperture
M 1
W’i Fourier
re-imaging transform
camera lens (L4} lens (L3)

Fig. 5. Experimental setup: the SLM was imaged onto the camera, which was mounted on
a translation stage to move along the optic axis. An aperture was placed in the far field of
the SLM, between the lenses, to filter out the first order diffraction pattern from the zero
order light.

(g) 11cm

Fig. 6. Transverse section of an array of 9 Bessel beams propagating along the z axis.
Positions along the z axis are shown for each image, corresponding to points in Fig. 7.

beams generated and shown in Fig. 6 present a core radius of about 7cope =~ 42 pm.
Fig. 7 shows the evolution as a function of the propagation distance z of the peak
intensity (which was extracted from the maximum intensity recorded by a single CCD
pixel) for three different Bessel beams of the array (the Bessel beams positions are
illustrated in the inset of the figure).

Although a rigorous approach would have needed the acquisition of different im-
ages at the same position (in order to average the peak intensity recorded), and also
for many more z positions, the results show a Bessel zone length of 2,4, ~ 9cm.
Note the reduction of the Bessel beams intensity going from the bottom to the top
of the array, probably due to a non uniform illumination of the SLM aperture. We
expect the fluctuations in intensity in Fig. 7 are artefacts due to the pixellation of
the CCD and interference effects from the sensor coverglass- the core size 7cope Was
only a few pixels.

The centres of the Bessel beams are placed in the central 40% of the SLM, such
that the edge of the SLM comes no closer to any given beam’s centre than 0.3 times
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Fig. 7. Recorded peak intensity on the CCD, I(z), for three different Bessel beams in the
9 X 9 array generated by means of the axicon phase mask hologram method.

the SLM width. This means that the length of the Bessel zone will be at least 0.6
times that of a single Bessel beam generated with an axicon on the SLM, and usually
longer (as the Bessel beam will still be formed after this distance even if part of the
aperture is obscured, though its shape will be slightly distorted). This is in contrast to
non-overlapping axicons, where three beams would require the length to be reduced
by a factor of three compared to the single axicon.

6 Conclusions

A new efficient method to generate Bessel beams with an SLM has been presented.
This method directly introduces in the SLM the phase variation of an axicon, i.e.
e’"®. This can be much more efficient in terms of usable power on the SLM, with
respect to usual methods of generation where the Fourier transform pattern of the
Bessel beam is used as holographic mask for the SLM [15]. Indeed, in the latter case,
for the generation of a high quality Bessel beam (long non diffracting propagation
distance and narrow core), the ring aperture of the SLM mask must be very thin
(ideally the thickness should tend to zero), clearly corresponding to a high power loss
and a consequent low efficiency of the generation process. The method proposed here
overcomes this limitation. Moreover, it involves the direct use of a single SLM (in
contrast to the work of [16], where a real axicon was used in addition to the SLM).
Furthermore, we have demonstrated the possibility of efficiently generating arrays
of Bessel beams, useful for instance for various applications such as the nano and
micromachining of glass channel structures [19] by means of high power pulsed lasers.

The experiment has been performed in the context of STELLA, the School for Training in
Experiments with Lasers and Laser Applications, hold at the Insubria University in Como
from June 20 to July 8, 2011 (see www.stella-school.eu). The Authors wish to acknowledge
CARIPLO, UNIVERCOMO and Banca del Monte di Lombardia Foundations for having
financed the project. Authors thank M. Bhuyan, M. Lee and K. Singh for support in the
experiment. MJP would like to acknowledge the Royal Society for financial support.
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