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Abstract. Time of arrival (TOA) based geolocation schemes for indoor
multi-hop environment are investigated and compared to some of conven-
tional geolocation schemes such as least squares (LS) or residual weight-
ing (RWGH). The multi-hop ranging involves positive multi-hop noise
as well as non-line of sight (NLOS) and Gaussian measurement noise, so
that it is more prone to ranging error than one-hop range. In this paper,
RWGH algorithm is modified by adapting weighted residual normaliza-
tion considering the number of hops taken to measure each ranging. The
iterative positive noise mitigation schemes are further developed by us-
ing distance enlargement test (DET) to mitigate the multi-hop ranging
noise. Simulation results show that the proposed modified RWGH algo-
rithms show 5 to 25% smaller average estimation error compared to LS
and RWGH for both positive noise mitigation and no mitigation cases,
and the positive noise mitigation schemes provide 28 to 42% error miti-
gation compared to no mitigation schemes.

1 Introduction

Rather recently, geolocation finding has attracted much attention in the indoor
environments. Depending on environments and applications, ranging and ge-
olocation measurements can be performed in a variety of ways, using angle of
arrival (AOA), time of arrival (TOA), or Received Signals Strength (RSS) [1].
The TOA technique where range is determined by measured propagation delay
between mobile node (MN) and sensor node (SN) is the most popular for accu-
rate geolocation systems [1]. For TOA geolocation, a set of ranging information
allow us to draw a multiple number of circles at each SN with radius of their
measurement. The traditional geometrical approach for computing the position
of MN is to solve for the intersection of the circular lines of position. The circles
do not intersect at a point due to the measurement noise, requires more sta-
tistically adjustable methods, such as least squares (LS) or residual weighting
(RWGH) location estimation [2-3].

The traditional geolocation approaches assumed a few fixed, powerful long
range nodes, which is similar to base station for communicating with all other



nodes in the network. However, if there is no direct communication link between
MN and SN, the range must be measured by using multi-hop relaying [4-5]. It
was found in [4] that larger number of hops of TOA based ranging makes raging
measurement value more unreliable in the system of one-dimensionally placed
nodes. This paper assumed the two-dimensional non-linearly arranged multi-hop
cases, in which the sum of intermediate range measurements is always greater
than the direct distance between source and destination. In this paper, RWGH
algorithm is modified by adapting weighted residual normalization considering
the number of hops taken to measure each ranging. The iterative positive noise
mitigation schemes are further developed by using distance enlargement test
(DET) to mitigate the multi-hop ranging noise.

The remainder of the paper is organized as follows. In Section 2, the system
description of geolocation problem for multi-hop wireless network is introduced.
The Section 3 represents the TOA-based geolocation schemes for one-hop ranging
measurements. In Section 4, the proposed geolocation schemes for multi-hop
ranging measurements are presented. The performances of the schemes are shown
in Section 5. Finally, conclusions are made in Section 6.

2 System Description

2.1 Geolocation in Multi-hop Wireless Network

In wireless indoor network, the nodes have a limited energy supply and a very
limited communication range, so that SNs often should route through other
wireless nodes to communicate to remote MNs [4-5][8]. Fig. 1 shows a wireless
multi-hop network example, where the positions of sensor nodes (SNs) are known
but the positions of the remaining mobile nodes (MNs) are unknown. The ques-
tion is how to get the reliable positions of the MNs by using the known positions
of SNs. MN 1 can reach to all of three SNs with direct link, while MN 2 has two
direct links to SN 1 and SN 2 and one relay link to SN 3 via MN 1. Since at
least three ranging measurements are needed for 2-D geolocation, the position of
MN 1 can be determined by three direct ranging measurements, but MN 2 has
two direct ranging measurements and the third ranging information from SN 3
which is measured by relay link.

2.2 Multi-hop Ranging Measurement

The multi-hop ranging measurement consists of mobile node (MN), sensor node
(SN), and R relay nodes (RNs) as shown in Fig. 2. It is assumed that the
geolocation systems originally know the locations of SNs and the number of hops
between SN to MN, but it does not know location of MN and RN. Therefore, the
range measurement between MN and SN should be measured by sum of each
hop range measurement. The range measurement between mobile node (MN)
and the i-th sensor node (SN) at time instance ¢ is modeled as:



B sensor Node (SN)
O Mobile Node (MN)

SN2

Fig. 1. A wireless multi-hop network example
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ri(t) =Y di;(t), i=1,2,.,N, (1)
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where d; ;(t) is the range measurement between the (j — 1)-th relay and the
j-th relay node (RN). d; 1(t) is the range measurement between MN to RN 1 and
d; r(t) is the range measurement between RN R to SN, where R is the number
of RNs. While the authors of [4-5] assumed the one-dimensional system in which
all of nodes are linearly placed, we assume the non-linearly placed multi-hop
cases, where sum of intermediate range measurements is always lager than the
direct distance between source and destination.
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Fig. 2. A ranging example for wireless multi-hop network

2.3 Problem Formulation

The range measurement of the i-th SN is modeled as:

ri(t) = Li(t) +ng(t) + NLOS;(t) + MHR;(t), i=1,2,..



where L;(t) is the real line of sight (LOS) distance defined as:

Li(t) =\ (@ar — 2% + (s — )", 3)

where (2., Yy ) and (x;,y;) are the coordinates of the MN and the i-th SN re-

spectively. n;(t) is a measurement noise modeled as zero mean Gaussian random
variable. If the variance of one-hop range Gaussian random variable is o2, that
of R-hop range is R-0? [4]. When direct LOS path is not detected, NLOS;(t) for
one-hop range can be model as the positive Exponential distribution [2-3][6-7].
Therefore, NLOS error for R-hop range can be modeled as R-Erlang random
variable. If multi-hop exists and relay nodes are not linearly placed, M H R;(t)
is positive error. The geolocation problem is to determine the coordinates of the
MN (2, yr) by using range measurements of (2).

3 TOA-based Geolocation Schemes for One-Hop Ranges

3.1 Least Squares (LS)

The LS location estimation fundamentally focuses on minimizing the value of
the least square objective function. The LS estimated location is determined as:

2
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where (z;,y;) is the coordinate of the i-th SN and r; is the range measurement.
N is the number of SN. The square-root term is readily recognized as the dis-
tance between a point (z,y) and a SN located at (x;,y;). The difference in the
parentheses is commonly called residual of the estimate [2-3][7].

3.2 Residual Weighting (RWGH)

The residual weighting (RWGH) [2-3] is a form of weighted least-squared algo-
rithm which is a way of mitigating the effects of noise in ranging measurements
on NLOS channel conditions. Since NLOS channel conditions introduce strictly
positive noise, ranging measurements corrupted by NLOS noise would give lo-
cation estimates having larger residuals than that of no NLOS case. Therefore,
if the number of distance measurements is available, then various sub-groups
of range measurements allow us to compute intermediate LS estimates using
those sub-groups. Some of these intermediate estimates would have lower resid-
ual than the others. The final estimate of the location can be determined as a
linear combination of these intermediate estimates weighted by the inverse of its
associated residual. Specifically, given N (N > 3) distance measurements, the
algorithm calls for the formation of M different distance measurement combina-
tions, where
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M=y ( @- ) (5)
i=3
with each combination being represented by an index set {Si|k = 1,2,..., M}.
For S, an intermediate LS estimate (&, ¢x) is computed as follows:
(jkvgk) = argIlei;lRes(l',y,Sk), (6)

where the residual of the k-th SN set S} is defined as:
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A normalized residual is computed for every intermediate estimate, (2, Jx) as

= ~ A Res(j\:kh glﬁ Sk)
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The final location estimate (£zwew, Yrwer) can then be computed as:
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where X = [xk yk] and Xpweon = [xRWGH yRWGH] [2'3]'

4 Geolocation Schemes for Multi-Hop Ranges

4.1 Modified Residual Weighting (MRWGH)

Since the multi-hop ranging is likely to become inaccurate compared to one of
direct path measure, each range measurement should be adopted into location
estimation scheme in consideration of its number of hops. RWGH algorithm is
modified by adapting weighted residual normalization considering the number
of hops taken to measure each ranging, so that larger residual values put with
smaller weight into final location estimation. We investigated two versions of
modified residual weighting (MRWGH), one of which is given as:

A Res (2, Uk, Sk)
Res (1, Gry Sk) = size of S H R;, (10)

where R; is the number of RNs for the i-th SN to make ranging. The other
modified one is given as:

~ ~ ~ Res 3 aS
Res(Zk, r, Sk) = Bes(Bis O, S) > Ri. (11)
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Therefore, the modified normalized residual of the k-th SN set Sj having larger
number of multi-hop range measurements gives smaller contribution to the final
position determined by linear summation of (8) than that of SN set having
smaller number of hops.

4.2 Positive Noise Mitigation with Distance Enlargement Test

This paper investigates the multi-hop ranging noise mitigation schemes by us-
ing distance enlargement test (DET) [8]. Once the location estimation (&,9) is
determined, the distance enlargement test (DET) metric for range measurement
of the i-th SN can be computed as:

DET; =ri — /(¢ —2.)* + (= p)",  i=12..N, (12)

where r; is the range measurement and (x;,y;) are the coordinates of the MN

and the i¢-th SN. If |DET;| < 4, where ¢ is the allowable expected error, the
location estimation (&, 9) is valid. If not, it has some positive ranging noise such
as multi-hop ranging noise or NLOS noise [8]. In the latter case, if DET; > §, the
range measurement has larger positive noise than other ranges. If DET; < —9,
the range has only Gaussian measurement noise or smaller positive noise than
other ranges. We investigate the positive mitigation scheme given as:

Tinew = {Ti’Old a DETi’ DET’L >0 ) 1= 17 2, ceny N, (13)

Ti.olds otherwise

where 7; ;¢ is the new range measurement for the ¢-th SN after positive noise
mitigation and 7; 14 is the old range measurement prior to conduct positive noise
mitigation. In our positive noise mitigation scheme, the location estimation such
as LS, RWGH and MRWGH is followed by distance enlargement test (DET).
Then if positive DET value is present the positive noise is mitigated by (13).
Otherwise, noise mitigation is not performed. The location estimation and pos-
itive noise mitigation are iteratively performed until DET; becomes less than ¢
for all range measurements.

5 Performance Evaluation

5.1 Simulation Setup

The performance of the geolocation algorithms described in Section 3 and 4 is
evaluated through simulations. The example of node arrangement is shown in
Fig. 3. The regular L x L grid arrangement of fixed four SNs is assumed and L is
set to 30m. One MN and three RNs are uniformly placed in L x L area and their
locations are generated more than 100 times. For each drop, RNs are fixed but
MN moves straightly with maximum speed of 8.33m/s. The simulation time for
each drop is 20msec, sampling time is set to 200nses, and the MN has a limited
communication range of 20m. If SN is within first-hop coverage of the MN, the



range measurement of the SN is determined by one-hop range. Otherwise, the
range of the SN is measured by multi-hop relaying. The mixed line of sight
(LOS)/non-line of sight (NLOS) scenario is simulated using a binomial random
variable, such that the channel is likely to be NLOS with probability p, and
LOS with probability (1 — p) [3]. Range measurements are generated by adding
measuring noise of Gaussian random variable and NLOS noise of Exponential
random variable to the true ranges. The probability density function of NLOS
error d (in meters) can be written as:

1 - C‘Tgnzs
D(d) = { 77 "€ , >0 (14)
0, otherwise

Il sensor node (SN)
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Fig. 3. The basic configuration example for a geolocation system simulation

5.2 Results on LOS Environment

We investigated the LS, RWGH, and two versions of MRWGH: MRWGH1 means
the modified version of (10) and MRWGH2 is that of (11). The positive noise
mitigation scheme is simulated for each geolocation algorithms in parallel with
the simulation of the original algorithms with no mitigation. The positive mitiga-
tion threshold ¢ is set to 0.3m. The performance metric is the average estimation
error F,,, defined as:

Eay = E{ Xy - X

3 (15)

where X, and X are the actual and estimated locations of a MN. Also, the av-
erage number of iterations for mitigation is computed for positive noise mitigated
schemes.

Fig. 4 shows the average estimation error as a function of standard deviation
of measurement noise in LOS environment. It is shown that MRWGH algorithms



show the smallest average estimation error among the simulated schemes, and
both versions of MRWGH have little difference in error performance in either
no mitigation or mitigation schemes. The average estimation error of MRWGH
algorithms is 20 to 25% smaller than that of LS and 9 to 13% smaller than that of
original RWGH. It is due to the fact that more uncertain multi-hop ranges give
less affects to the final position than one-hop ranges in the MRWGH algorithms.
The positive noise mitigated schemes show 28 to 30% smaller error than no
mitigation scheme of LS and RWGH, and around 33% less than that of MRWGH
algorithms. The RWGH with no mitigation provides almost same estimation
error performance as positive error mitigated LS scheme. For all of schemes, the
error performance degradation due to measurement noise is within 10%, even
though standard deviation of Gaussian noise changes from 0.0lm to 1.0m. Fig.
5 represents the average number of iterations for mitigation as a function of
standard deviation of measurement noise for positive noise mitigation schemes
in LOS case. It is shown that the necessary number of iterations of positive noise
mitigation for MRWGH algorithms is around 18% smaller compared to that of
LS, and 6% smaller compared to that of RWGH.
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Fig. 4. Average estimation error as a function of standard deviation of measurement
noise (LOS case)

5.3 Results on mixed LOS/NLOS Environment

Fig. 6 shows average estimation error as a function of standard deviation of
measurement noise in mixed LOS/NLOS environment where the p(NLOS) is set
to 0.2. The average estimation error of MRWGH algorithms is 17 to 22% smaller
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Fig. 5. Average number of iterations for mitigation as a function of standard deviation
of measurement noise for positive noise mitigation schemes (LOS case)

than that of LS and 5 to 8% smaller than that of original RWGH. The positive
noise mitigated schemes show around 37 to 42% smaller error than no mitigation
schemes. Since positive noise mitigation schemes manage both NLOS and multi-
hop ranging errors, the performance gain in NLOS case is much larger than in
LOS case. Fig. 7 represents the average number of iterations for mitigation as a
function of standard deviation of measurement noise for positive noise mitigation
schemes in mixed LOS/NLOS environment in which the probability of a range
measurement corrupted by the NLOS noise p(NLOS) is set to 0.2. The number
of iterations of positive noise mitigation for MRWGH algorithms is around 17%
smaller compared to that of LS, and around 6% smaller compared to that of
RWGH.

Fig. 8 represents the average estimation error as a function of p(NLOS) when
the standard deviation of measurement noise is 0.01m. It is shown that if the
p(NLOS) increases from 0.0 (LOS) to 1.0, the performance difference among the
schemes become larger. Since positive noise mitigation schemes could manage
both NLOS and multi-hop ranging errors, the performance gain in NLOS case
increases when the p(NLOS) becomes larger. Fig. 9 shows the average number
of iterations for mitigation as a function of p(NLOS) for positive noise mitiga-
tion schemes when the standard deviation of measurement noise is 0.01m. It is
found that the number of iterations of positive noise mitigation for MRWGH
algorithms is around 16 to 18% smaller compared to that of LS, and 4 to 6%
smaller compared to that of RWGH. It is demonstrated that the MRWGH algo-
rithms improve average estimation error performance compared to the LS and
RWGH for both positive noise mitigation and no mitigation cases, and reduce
the necessary number of iterations for positive noise mitigation case. Also, the



positive noise mitigation schemes provide around 28 to 42% error mitigation
effect compared to the no mitigation schemes.
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Fig. 6. Average estimation error as a function of standard deviation of measurement
noise (mixed LOS/NLOS case, p(NLOS) is 0.2)

6 Concluding Remarks

The multi-hop ranging often involves positive multi-hop noise as well as NLOS
and Gaussian measurement noise, so that it is more prone to ranging error
than one-hop range. In this paper, RWGH algorithm was modified by adapt-
ing weighted residual normalization considering the number of hops taken to
measure each ranging. The iterative positive noise mitigation schemes were fur-
ther developed by DET to mitigate the multi-hop ranging noise. The proposed
schemes were compared to LS and RWGH algorithms in terms of average esti-
mation error and the number of positive noise mitigations. It was demonstrated
that the proposed MRWGH algorithms improve average estimation error perfor-
mance compared to the LS and RWGH for both positive noise mitigation and
no mitigation cases, and reduce the necessary number of iterations for positive
noise mitigation case. Also, the positive noise mitigation schemes provide around
28 to 42% error mitigation effect compared to the no mitigation schemes.
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