Nothing Special   »   [go: up one dir, main page]

skip to main content
10.5555/949531.949570acmconferencesArticle/Chapter ViewAbstractPublication PagesvisConference Proceedingsconference-collections
Article
Free access

Visualization of irregular multivariate data

Published: 23 October 1990 Publication History

Abstract

Scientific data is often sampled at irregular spatial locations because of physical constraints, yet most visualization software applies only to gridded or regular data. We will discuss effective techniques for representing scalar and vector valued functions that interpolate to irregularly located data. Special attention will be given to the situations where the sampling domain is a 2D plane, a 3D volume, or a closed 3D surface. The globally defined interpolants can be evaluated on a fine regular grid and they can then be visualized using conventional techniques. Triangular and tetrahedral based visualization techniques are also presented.

References

[1]
Barnhill, R. E. (1985), Surfaces in computer aided geometric design: A survey with new results, Computer Aided Geometric Design 2, 1--17.
[2]
Barnhill, R. E., Makatura, G. T. and Stead, S. E. (1987), A new look at higher dimensional surfaces through computer graphics, in: G. E. Farin, ed., 'Geometric Modeling', SIAM, Philadelphia, 123--129.
[3]
Barnhill, R. E. and Ou, H. S. (1990), Surfaces defined on surfaces, Computer Aided Geometric Design 7, 323--336.
[4]
Barnhill, R. E., Piper, B. R. and Rescorla, K.(1987), Interpolation to arbitrary data on a surface, in: G. E. Farin, ed., 'Geometric Modeling', SIAM, Philadelphia, 281--289.
[5]
Carlson, R. E. and Foley, T. A. (1990), The parameter R2 and multiquadric interpolation, Technical Report, Lawrence Livermore National Laboratory.
[6]
Drebin, R., Carpenter, L. and Hanrahan, P. (1988), Volume rendering, Computer Graphics 22, no.4, 65--74.
[7]
Duchon, J. (1975), Splines minimizing rotation-invariant semi-norms in Sobolev spaces, in: Schempp, W. and Zeller, K., eds., Multivariate Approximation Theory, Birkhauser, Basel, 85--100.
[8]
Foley, T. A. (1987), Interpolation and approximation of three and four-dimensional scattered data, Comp. Math. Appls. 13, 711--740.
[9]
Foley, T. A.(1990), Interpolation to scattered data on a spherical domain, in: M. Cox and J. Mason, eds., 'Algorithms for Approximation II', Chapman and Hall, London, 303--310.
[10]
Foley, T. A., Lane, D. A. and Nielson, G. M. (1990), Towards animating ray-traced volume visualization, Visualization and Computer Animation Journal 1.
[11]
Foley, T. A., Lane, D. A., Nielson, G. M., Franke, R. and Hagen H. (1990), Interpolation of scattered data on closed surfaces, Computer Aided Geometric Design 7, 303--312.
[12]
Foley, T. A., Lane, D. A., Nielson, G. M. and Ramaraj, R. (1990), Visualizing functions over a sphere, IEEE Computer Graphics & Applications 10, no. 1, 32--40.
[13]
Franke, R. (1982), Smooth interpolation of scattered data by local thin plate splines, Comp. Math. Appls. 8, 273--281.
[14]
Franke, R. (1982), Scattered data interpolation: Tests of some methods, Math. Comp. 38, 181--200.
[15]
Franke, R. and Nielson, G. M. (1980), Smooth interpolation to large sets of scattered data, Intern. J. Numer Meth. Engrg. 15, 1691--1704.
[16]
Franke, R. and Nielson, G. M. (1990), Scattered data interpolation and applications: a tutorial and survey, in Geometric Modeling: Methods and Their Applications, Springer.
[17]
Hardy, R. L. (1971), Multiquadratic equation of topography and other irregular surfaces, J. Geophys. Res. 76, 1905--1915.
[18]
Hardy, R. L. (1990), Theory and applications of the multiquadric-biharmonic method, Comp. Math. Appls. 19, no. 8, 163--208.
[19]
Hardy, R. L. and Goepfert, W. M. (1975), Least squares prediction of gravity anomalies, geoidal undulations, and deflections of the vertical with multiquadric harmonic functions, Geophys. Research Letters 2, 423--426.
[20]
Lawson, C. L. (1984), C1 Surface interpolation for scattered data on a sphere, Rocky Mountain J. Math. 14, 177--202.
[21]
Levoy, M. (1988), Display of surfaces from volume data, IEEE Computer Graphics & Applications 8, no. 5, 29--37.
[22]
Lorensen, W. E. and Cline, H.(1987), Marching cubes: a high resolution 3D surface construction algorithm, Computer Graphics 21, no. 4, 163--169.
[23]
Nielson, G. M. (1983), A method for interpolation of scattered data based upon a minimum norm network, Math. Comp. 40, 253--271.
[24]
Nielson, G. M. and Foley, T. A. (1989), A survey of applications of an affine invariant norm, in: Lyche, T., Schumaker, L. L., eds., Mathematical Methods in CAGD, Academic Press, New York.
[25]
Nielson, G. M. and Hamann, B. (1990), Techniques for interactive visualization of volumetric data, this issue.
[26]
Nielson, G. M. and Ramaraj, R. (1987), Interpolation over a sphere based upon a minimum norm network, Computer Aided Geometric Design 4, 41--57.
[27]
Pottmann, H. and Eck, M. (1990), Modified multiquadric methods for scattered data interpolation over a sphere, Computer Aided Geometric Design 7, 313--322.
[28]
Renka, R. L. (1984), Interpolation of data on the surface of a sphere, ACM Trans. Math. Software, 417--436.
[29]
Renka R. L. (1988), Algorithm 660: QSHEP2D: Quadratic Shepard method for bivariate interpolation of scattered data, ACM TOMS 14, 149--150.
[30]
Sabella, P. (1988), A rendering algorithm for visualizing 3D scalar fields, Computer Graphics 22, no. 4, 51--58.
[31]
Upson, C. and Keeler, M. (1988), V-BUFFER: visible volume rendering, Computer Graphics 22, no. 4, 59--64.

Cited By

View all
  • (2004)Adaptive sampling and modeling of analog circuit performance parameters with pseudo-cubic splinesProceedings of the 2004 IEEE/ACM International conference on Computer-aided design10.1109/ICCAD.2004.1382709(931-938)Online publication date: 7-Nov-2004
  • (1991)Multi-valued volumetric visualizationProceedings of the 2nd conference on Visualization '9110.5555/949607.949643(218-225)Online publication date: 22-Oct-1991
  • (1991)Visualizing and Modeling Scattered Multivariate DataIEEE Computer Graphics and Applications10.1109/38.7945311:3(47-55)Online publication date: 1-May-1991
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
VIS '90: Proceedings of the 1st conference on Visualization '90
October 1990
501 pages
ISBN:0818620838

Sponsors

Publisher

IEEE Computer Society Press

Washington, DC, United States

Publication History

Published: 23 October 1990

Check for updates

Qualifiers

  • Article

Conference

VIS90
Sponsor:
VIS90: Visualization '90
October 23 - 26, 1990
California, San Francisco

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)21
  • Downloads (Last 6 weeks)4
Reflects downloads up to 17 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2004)Adaptive sampling and modeling of analog circuit performance parameters with pseudo-cubic splinesProceedings of the 2004 IEEE/ACM International conference on Computer-aided design10.1109/ICCAD.2004.1382709(931-938)Online publication date: 7-Nov-2004
  • (1991)Multi-valued volumetric visualizationProceedings of the 2nd conference on Visualization '9110.5555/949607.949643(218-225)Online publication date: 22-Oct-1991
  • (1991)Visualizing and Modeling Scattered Multivariate DataIEEE Computer Graphics and Applications10.1109/38.7945311:3(47-55)Online publication date: 1-May-1991
  • (1990)Techniques for the interactive visualization of volumetric dataProceedings of the 1st conference on Visualization '9010.5555/949531.949538(45-50)Online publication date: 23-Oct-1990

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media