Nothing Special   »   [go: up one dir, main page]

skip to main content
10.5555/3237383.3238035acmconferencesArticle/Chapter ViewAbstractPublication PagesaamasConference Proceedingsconference-collections
research-article
Public Access

Nash Equilibrium Computation in Resource Allocation Games

Published: 09 July 2018 Publication History
First page of PDF

References

[1]
Bharat Adsul, Jugal Garg, Ruta Mehta, and Milind Sohoni. 2011. Rank-1 Bimatrix Games: A Homeomorphism and a Polynomial Time Algorithm (STOC '11). ACM, New York, NY, USA, 195--204.
[2]
Amir Mahdi Ahmadinejad, Sina Dehghani, Mohammad Taghi Hajiaghayi, Brendan Lucier, Hamid Mahini, and Saeed Seddighin. 2016. From Duels to Battlefields: Computing Equilibria of Blotto and Other Games (AAAI'16). AAAI Press, Phoenix, Arizona, 369--375. http://dl.acm.org/citation.cfm?id=3015812.3015869
[3]
Soheil Behnezhad, Sina Dehghani, Mahsa Derakhshan, Mohammad Taghi Hajiaghayi, and Saeed Seddighin. 2017. Faster and Simpler Algorithm for Optimal Strategies of Blotto Game AAAI.
[4]
Yang Cai, Ozan Candogan, Constantinos Daskalakis, and Christos Papadimitriou. 2016. Zero-Sum Polymatrix Games: A Generalization of Minmax. Mathematics of Operations Research Vol. 41 (Jan. 2016).
[5]
Y. Cai and C. Daskalakis. 2011. On Minmax Theorems for Multiplayer Games. Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, 217--234. http://epubs.siam.org/doi/abs/10.1137/1.9781611973082.20
[6]
Xi Chen and Xiaotie Deng. 2006. Settling the Complexity of Two-Player Nash Equilibrium (FOCS '06). IEEE Computer Society, Washington, DC, USA, 261--272.
[7]
Vincent Conitzer and Tuomas Sandholm. 2006. A Technique for Reducing Normal-form Games to Compute a Nash Equilibrium (AAMAS '06). ACM, New York, NY, USA, 537--544.
[8]
George Bernard Dantzig. 1951. A Proof of the equivalence of the programming problem and the game problem. Activity Analysis of Production and Allocationn, T C. Koopmans (eds). John Wiley & Sons, New York: 330--335 (1951).
[9]
Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou. 2006. The Complexity of Computing a Nash Equilibrium (STOC '06). ACM, New York, NY, USA, 71--78.
[10]
M. Grötschel, L. Lovasz, and A. Schrijver. 1981. The ellipsoid method and its consequences in combinatorial optimization. Combinatorica, Vol. 1, 2 (June. 1981), 169--197.
[11]
J. F. Nash. 1951. Non-cooperatie games. Annals of Mathematics Vol. 54(2) (1951), 286--295.
[12]
John Von Neumann. 1944. Theory Of Games And Economic Behavior. Princeton University Press. http://archive.org/details/theoryofgamesand030098mbp

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
AAMAS '18: Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems
July 2018
2312 pages

Sponsors

In-Cooperation

Publisher

International Foundation for Autonomous Agents and Multiagent Systems

Richland, SC

Publication History

Published: 09 July 2018

Check for updates

Author Tags

  1. blotto game
  2. cooperative games: computation
  3. cooperative games: theory & analysis
  4. linear programming
  5. noncooperative games: computation
  6. noncooperative games: theory & analysis
  7. resource allocation
  8. zero-sum

Qualifiers

  • Research-article

Funding Sources

Conference

AAMAS '18
Sponsor:
AAMAS '18: Autonomous Agents and MultiAgent Systems
July 10 - 15, 2018
Stockholm, Sweden

Acceptance Rates

AAMAS '18 Paper Acceptance Rate 149 of 607 submissions, 25%;
Overall Acceptance Rate 1,155 of 5,036 submissions, 23%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 151
    Total Downloads
  • Downloads (Last 12 months)35
  • Downloads (Last 6 weeks)4
Reflects downloads up to 20 Dec 2024

Other Metrics

Citations

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media