Nothing Special   »   [go: up one dir, main page]

skip to main content
10.5555/3039686.3039825acmconferencesArticle/Chapter ViewAbstractPublication PagessodaConference Proceedingsconference-collections
research-article

Subquadratic algorithms for the diameter and the sum of pairwise distances in planar graphs

Published: 16 January 2017 Publication History

Abstract

We show how to compute in O(n11/6 polylog(n)) expected time the diameter and the sum of the pairwise distances in an undirected planar graph with n vertices and positive edge weights. These are the first algorithms for these problems using time O(nc) for some constant c < 2.

References

[1]
A. Abboud, V. Vassilevska Williams, and J. Wang. Approximation and fixed parameter subquadratic algorithms for radius and diameter in sparse graphs. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '16, pages 377--391. SIAM, 2016.
[2]
C. Bohler, R. Klein, and C. Liu. Forest-like abstract voronoi diagrams in linear time. In Proceedings of the 26th Canadian Conference on Computational Geometry, CCCG 2014, Halifax, Nova Scotia, Canada, 2014, 2014.
[3]
G. Borradaile, P. Sankowski, and C. Wulff-Nilsen. Min st-cut oracle for planar graphs with near-linear preprocessing time. ACM Transactions on Algorithms, 11(3):16:1--16:29, 2015.
[4]
S. Cabello. Many distances in planar graphs. Algorithmica, 62(1--2):361--381, 2012.
[5]
S. Cabello, E. W. Chambers, and J. Erickson. Multiple-source shortest paths in embedded graphs. SIAM J. Comput., 42(4):1542--1571, 2013.
[6]
S. Cabello and C. Knauer. Algorithms for graphs of bounded treewidth via orthogonal range searching. Comput. Geom., 42(9):815--824, 2009.
[7]
É. Colin de Verdière. Shortest cut graph of a surface with prescribed vertex set. In Algorithms - ESA 2010, 18th Annual European Symposium, Liverpool, UK, September 6--8, 2010. Proceedings, Part II, volume 6347 of Lecture Notes in Computer Science, pages 100--111. Springer, 2010.
[8]
J. Fakcharoenphol and S. Rao. Planar graphs, negative weight edges, shortest paths, and near linear time. J. Comput. Syst. Sci., 72(5):868--889, 2006.
[9]
G. N. Frederickson. Fast algorithms for shortest paths in planar graphs, with applications. SIAM J. Comput., 16:1004--1022, 1987.
[10]
G. N. Frederickson. Planar graph decomposition and all pairs shortest paths. J. ACM, 38(1):162--204, 1991.
[11]
O. Goldreich and D. Ron. Approximating average parameters of graphs. Random Struct. Algorithms, 32(4):473--493, 2008.
[12]
M. T. Goodrich. Planar separators and parallel polygon triangulation. J. Comput. Syst. Sci., 51(3):374--389, 1995.
[13]
P. Indyk. Sublinear time algorithms for metric space problems. In Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, pages 428--434. ACM, 1999.
[14]
K. Kawarabayashi, P. N. Klein, and C. Sommer. Linearspace approximate distance oracles for planar, boundedgenus and minor-free graphs. In 38th International Colloquium on Automata, Languages and Programming (ICALP), pages 135--146, 2011.
[15]
P. N. Klein. Multiple-source shortest paths in planar graphs. In SODA '05: Proc. 16th Symp. Discrete algorithms, pages 146--155, 2005.
[16]
P. N. Klein, S. Mozes, and C. Sommer. Structured recursive separator decompositions for planar graphs in linear time. In Symposium on Theory of Computing Conference, STOC'13, pages 505--514, 2013. See http://arxiv.org/abs/1208.2223 for the full version.
[17]
P. N. Klein and S. Subramanian. A fully dynamic approximation scheme for shortest paths in planar graphs. Algorithmica, 22(3):235--249, 1998.
[18]
R. Klein. Concrete and Abstract Voronoi Diagrams, volume 400 of Lecture Notes in Computer Science. Springer, 1989.
[19]
R. Klein. Abstract voronoi diagrams. In M.-Y. Kao, editor, Encyclopedia of Algorithms, pages 1--5. Springer Berlin Heidelberg, 2014.
[20]
R. Klein, E. Langetepe, and Z. Nilforoushan. Abstract voronoi diagrams revisited. Comput. Geom., 42(9):885--902, 2009.
[21]
R. Klein, K. Mehlhorn, and S. Meiser. Randomized incremental construction of abstract voronoi diagrams. Comput. Geom., 3:157--184, 1993.
[22]
D. Marx and M. Pilipczuk. Optimal parameterized algorithms for planar facility location problems using voronoi diagrams. CoRR, abs/1504.05476, 2015.
[23]
S. Mozes, Y. Nussbaum, and O. Weimann. Faster shortest paths in dense distance graphs, with applications. CoRR, abs/1404.0977, 2014.
[24]
S. Mozes and C. Sommer. Exact distance oracles for planar graphs. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, pages 209--222. SIAM, 2012.
[25]
G. F. I. Y. Nussbaum, P. Sankowski, and C. Wulff-Nilsen. Improved algorithms for min cut and max flow in undirected planar graphs. In Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC, pages 313--322, 2011.
[26]
J. K. Park and C. A. Phillips. Finding minimumquotient cuts in planar graphs. In Proceedings of the Twenty-fifth Annual ACM Symposium on Theory of Computing, STOC '93, pages 766--775, 1993.
[27]
V. Patel. Determining edge expansion and other connectivity measures of graphs of bounded genus. SIAM J. Comput., 42(3):1113--1131, 2013.
[28]
L. Roditty and V. Vassilevska Williams. Fast approximation algorithms for the diameter and radius of sparse graphs. In Symposium on Theory of Computing Conference, STOC'13, pages 515--524. ACM, 2013.
[29]
M. Thorup. Compact oracles for reachability and approximate distances in planar digraphs. J. ACM, 51(6):993--1024, 2004.
[30]
O. Weimann and R. Yuster. Approximating the diameter of planar graphs in near linear time. ACM Transactions on Algorithms, 12(1):12, 2016. Preliminary version in SODA 2012.
[31]
C. Wulff-Nilsen. Wiener index, diameter, and stretch factor of a weighted planar graph in subquadratic time. Technical Report 08--16, Department of Computer Science, University of Copenhagen, 2008. Preliminary version in EurCG 2009.
[32]
C. Wulff-Nilsen. Wiener index, diameter, and stretch factor of a weighted planar digraph in subquadratic time, 2010. Paper M in the PhD thesis of C. Wulff-Nilsen, availalbe at http://www.diku.dk/forskning/phd-studiet/phd/ThesisChristian.pdf.

Cited By

View all
  • (2020)New hardness results for planar graph problems in p and an algorithm for sparsest cutProceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing10.1145/3357713.3384310(996-1009)Online publication date: 22-Jun-2020
  • (2019)Planar diameter via metric compressionProceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing10.1145/3313276.3316358(152-163)Online publication date: 23-Jun-2019
  • (2019)Almost optimal distance oracles for planar graphsProceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing10.1145/3313276.3316316(138-151)Online publication date: 23-Jun-2019
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
SODA '17: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms
January 2017
2756 pages

Sponsors

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 16 January 2017

Check for updates

Badges

  • Best Paper

Qualifiers

  • Research-article

Conference

SODA '17
Sponsor:
SODA '17: Symposium on Discrete Algorithms
January 16 - 19, 2017
Barcelona, Spain

Acceptance Rates

Overall Acceptance Rate 411 of 1,322 submissions, 31%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)0
Reflects downloads up to 09 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2020)New hardness results for planar graph problems in p and an algorithm for sparsest cutProceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing10.1145/3357713.3384310(996-1009)Online publication date: 22-Jun-2020
  • (2019)Planar diameter via metric compressionProceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing10.1145/3313276.3316358(152-163)Online publication date: 23-Jun-2019
  • (2019)Almost optimal distance oracles for planar graphsProceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing10.1145/3313276.3316316(138-151)Online publication date: 23-Jun-2019
  • (2019)Faster Approximate Diameter and Distance Oracles in Planar GraphsAlgorithmica10.1007/s00453-019-00570-z81:8(3075-3098)Online publication date: 1-Aug-2019
  • (2018)Near-optimal compression for the planar graph metricProceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms10.5555/3174304.3175305(530-549)Online publication date: 7-Jan-2018
  • (2018)Better tradeoffs for exact distance oracles in planar graphsProceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms10.5555/3174304.3175304(515-529)Online publication date: 7-Jan-2018
  • (2018)Voronoi diagrams on planar graphs, and computing the diameter in deterministic Õ(n5/3) timeProceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms10.5555/3174304.3175303(495-514)Online publication date: 7-Jan-2018
  • (2018)Subquadratic Algorithms for the Diameter and the Sum of Pairwise Distances in Planar GraphsACM Transactions on Algorithms10.1145/321882115:2(1-38)Online publication date: 7-Dec-2018

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media