Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3007120.3007132acmotherconferencesArticle/Chapter ViewAbstractPublication PagesmommConference Proceedingsconference-collections
research-article

Mobile Gait Match-on-Card Authentication from Acceleration Data with Offline-Simplified Models

Published: 28 November 2016 Publication History

Abstract

Biometrics have become important for authentication on mobile devices, e.g. to unlock devices before using them. One way to protect biometric information stored on mobile devices from disclosure is using embedded smart cards (SCs) with biometric match-on-card (MOC) approaches. Computational restrictions of SCs thereby also limit biometric matching procedures. We present a mobile MOC approach that uses offline training to obtain authentication models with a simplistic internal representation in the final trained state, whereat we adapt features and model representation to enable their usage on SCs. The obtained model is used within SCs on mobile devices without requiring retraining when enrolling individual users. We apply our approach to acceleration based mobile gait authentication, using a 16 bit integer range Java Card, and evaluate authentication performance and computation time on the SC using a publicly available dataset. Results indicate that our approach is feasible with an equal error rate of ~12% and a computation time below 2s on the SC, including data transmissions and computations. To the best of our knowledge, this thereby represents the first practically feasible approach towards acceleration based gait match-on-card authentication.

References

[1]
M. Bächlin, J. Schumm, D. Roggen, and G. Töster. Quantifying Gait Similarity: User Authentication and Real-World Challenge, pages 1040--1049. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.
[2]
N. Belgacem, A. Ali, R. Fournier, and F. Bereksi-Reguig. ECG based human authentication using wavelets and random forests. International Journal on Cryptography and Information Security (IJCIS), 2(2):1--11, 2012.
[3]
S. Bistarelli, F. Santini, and A. Vaccarelli. An asymmetric fingerprint matching algorithm for Java Card TM. Pattern Analysis and Applications, 9(4):359--376, 2006.
[4]
T. Bourlai, K. Messer, and J. Kittler. Face verification system architecture using smart cards. In Proc. ICPR 2004, volume 1, pages 793--796, Aug. 2004.
[5]
P. Bours and R. Shrestha. Eigensteps: A giant leap for gait recognition. In Security and Communication Networks (IWSCN) 2010, pages 1--6, May 2010.
[6]
C. Bouten, K. Koekkoek, M. Verduin, R. Kodde, and J. Janssen. A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity. IEEE Biomedical Engineering, 44(3):136--147, 1997.
[7]
J. Bringer, H. Chabanne, D. Le Métayer, and R. Lescuyer. Privacy by design in practice: Reasoning about privacy properties of biometric system architectures. In Formal Methods (FM) 2015, volume 9109 of Lecture Notes in Computer Science, pages 90--107. Springer, 2015.
[8]
K. Cao and A. Jain. Learning fingerprint reconstruction: From minutiae to image. IEEE Information Forensics and Security, 10(1):104--117, Jan. 2015.
[9]
W.-Y. Choi, D. Ahn, S. B. Pan, K. I. Chung, Y. Chung, and S.-H. Chung. SVM-based speaker verification system for match-on-card and its hardware implementation. Electronics and Telecommunications Research Institute Journal (ETRI), 28(3):320--328, June 2006.
[10]
A. Czajka, P. Strzelczyk, M. Chochowski, and A. Pacut. Iris recognition with match-on-card. In Proc. European Signal Processing Conference (EUSIPCO), pages 189--192, Poznan, Poland, Sept. 2007.
[11]
I. Daubechies. Orthonormal bases of compactly supported wavelets ii. variations on a theme. SIAM Journal on Mathematical Analysis, 24(2):499--519, 1993.
[12]
A. Dobson. An Introduction to Generalized Linear Models, Second Edition. Chapman & Hall/CRC Texts in Statistical Science. Taylor & Francis, 2010.
[13]
R. D. Findling, M. Muaaz, D. Hintze, and R. Mayrhofer. Shakeunlock: Securely transfer authentication states between mobile devices. IEEE Transactions on Mobile Computing (TMC), 2016. IEEE early access.
[14]
D. Gafurov. Performance and Security Analysis of Gait-based User Authentication. PhD thesis, Faculty of Mathematics and Natural Sciences at the University of Oslo, 2008.
[15]
D. Gafurov and E. Snekkenes. Gait recognition using wearable motion recording sensors. EURASIP Advances in Signal Processing, 2009:7:1--7:16, Jan. 2009.
[16]
D. Gafurov, E. Snekkenes, and P. Bours. Gait authentication and identification using wearable accelerometer sensor. In Automatic Identification Advanced Technologies, pages 220--225, June 2007.
[17]
J. Galbally, C. McCool, J. Fierrez, S. Marcel, and J. Ortega-Garcia. On the vulnerability of face verification systems to hill-climbing attacks. Pattern Recognition, 43(3):1027--1038, 2010.
[18]
S. Garcia-Salicetti, C. Beumier, G. Chollet, B. Dorizzi, J. L. l. Jardins, J. Lunter, Y. Ni, and D. Petrovska-Delacrétaz. BIOMET: A Multimodal Person Authentication Database Including Face, Voice, Fingerprint, Hand and Signature Modalities, pages 845--853. Springer, Berlin, Heidelberg, 2003.
[19]
M. Govan and T. Buggy. A computationally efficient fingerprint matching algorithm for implementation on smartcards. In Biometrics: Theory, Applications, and Systems (BTAS) 2007, pages 1--6, Sept. 2007.
[20]
P. Grother, W. Salamon, C. Watson, M. Indovina, and P. Flanagan. MINEX II: Performance of fingerprint match-on-card algorithms phase II / III report. NIST interagency report 7477 (rev. I). Technical report, Information Access Division, National Institute of Standards and Technology (NIST), May 2009.
[21]
M. R. Hestbek, C. Nickel, and C. Busch. Biometric gait recognition for mobile devices using wavelet transform and support vector machines. In Proc. Systems, Signals and Image Processing (IWSSIP), pages 205--210, Apr. 2012.
[22]
M. Hölzl, R. Mayrhofer, and M. Roland. Requirements for an open ecosystem for embedded tamper resistant hardware on mobile devices. In Proc. MoMM 2013, page 249. ACM, 2013.
[23]
R. K. Ibrahim, E. Ambikairajah, B. Celler, N. H. Lovell, and L. Kilmartin. Gait patterns classification using spectral features. In Signals and Systems Conference (ISSC) 2008, pages 98--102, June 2008.
[24]
ISO. Identification cards -- Integrated circuit cards -- Part 4: Organization, security and commands for interchange. 2005.
[25]
T. Iso and K. Yamazaki. Gait analyzer based on a cell phone with a single three-axis accelerometer. In Pro. MobileHCI 2006, pages 141--144, NY, USA, 2006. ACM.
[26]
A. K. Jain, B. F. Klare, and A. Ross. Guidelines for best practices in biometrics research. In International Conference on Biometrics (ICB), volume 8, Phuket, Thailand, May 2015.
[27]
A. K. Jain and K. Nandakumar. Biometric authentication: System security and user privacy. IEEE Computer, 45(11):87--92, 2012.
[28]
A. K. Jain, K. Nandakumar, and A. Nagar. Biometric template security. EURASIP Advances in Signal Processing, 2008:113:1--113:17, Jan. 2008.
[29]
A. K. Jain, A. A. Ross, and K. Nandakumar. Introduction to Biometrics. Springer, 2011.
[30]
J. Kittler, Y. Li, and J. Matas. Face authentication using client specific fisherfaces. The Statistics of Directions, Shapes and Images, pages 63--66, 1999.
[31]
P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Advances in Cryptology CRYPTO99, pages 388--397, 1999.
[32]
J. R. Kwapisz, G. M. Weiss, and S. A. Moore. Cell phone-based biometric identification. In Biometrics: Theory Applications and Systems (BTAS) 2010, pages 1--7, Sept. 2010.
[33]
K. Lee and H. Byun. A new face authentication system for memory-constrained devices. IEEE Consumer Electronics, 49(4):1214--1222, Nov. 2003.
[34]
A. Mannini and A. M. Sabatini. Machine learning methods for classifying human physical activity from on-body accelerometers. Sensors, 10(2):1154--1175, 2010.
[35]
J. Mäntyjärvi, M. Lindholm, E. Vildjiounaite, S.-M. Mäkelä, and H. Ailisto. Identifying users of portable devices from gait pattern with accelerometers. In Proc. IEEE Acoustics, Speech, and Signal Processing (ICASSP) 2005, volume 2, pages ii--973, 2005.
[36]
M. Martinez-Diaz, J. Fierrez-Aguilar, F. Alonso-Fernandez, J. Ortega-Garcia, and J. Siguenza. Hill-climbing and brute-force attacks on biometric systems: A case study in match-on-card fingerprint verification. In Proc. IEEE Security Technology, pages 151--159, Oct. 2006.
[37]
L. Middleton, A. A. Buss, A. Bazin, and M. S. Nixon. A floor sensor system for gait recognition. In Proc. IEEE Automatic Identification Advanced Technologies (AutoID) 2005, pages 171--176, Oct. 2005.
[38]
H. M. Moon, C. Won, and S. B. Pan. The multi-modal human identification based on smartcard in video surveillance system. In Proc. IEEE/ACM GreenCom and CPSCom 2010, pages 691--698, Dec. 2010.
[39]
A. Mostayed, S. Kim, M. M. G. Mazumder, and S. J. Park. Foot step based person identification using histogram similarity and wavelet decomposition. In Proc. Information Security and Assurance (ISA) 2008, pages 307--311, Apr. 2008.
[40]
M. Muaaz and R. Mayrhofer. An analysis of different approaches to gait recognition using cell phone based accelerometers. In Proc. MoMM 2013, pages 293:293--293:300, NY, USA, 2013. ACM.
[41]
M. Muaaz and R. Mayrhofer. Orientation independent cell phone based gait authentication. In Proc. MoMM 2014, pages 161--164, NY, USA, 2014. ACM.
[42]
M. Muaaz and R. Mayrhofer. Cross pocket gait authentication using mobile phone based accelerometer sensor. In Proc. Computer Aided Systems Theory (EUROCAST) 2015, pages 731--738, Las Palmas de Gran Canaria, Spain, Feb. 2015. Springer.
[43]
D. C. L. Ngo, A. B. J. Teoh, and J. Hu. Biometric Security. Cambridge Scholars Publishing, 2015.
[44]
C. Nickel. Accelerometer-based Biometric Gait Recognition for Authentication on Smartphones. PhD thesis, Technische Universität Darmstadt, 2012.
[45]
V. Niennattrakul and C. A. Ratanamahatana. Learning DTW global constraint for time series classification. CoRR, abs/0903.0041, 2009.
[46]
S. B. Pan, D. Moon, Y. Gil, D. Ahn, and Y. Chung. An ultra-low memory fingerprint matching algorithm and its implementation on a 32-bit smart card. IEEE Consumer Electronics, 49(2):453--459, May 2003.
[47]
S. Prabhakar, S. Pankanti, and A. Jain. Biometric recognition: security and privacy concerns. IEEE Security Privacy, 1(2):33--42, Mar. 2003.
[48]
S. Rahati, R. Moravejian, and F. M. Kazemi. Gait recognition using wavelet transform. In Proc. Information Technology: New Generations (ITNG) 2008, pages 932--936, Apr. 2008.
[49]
W. Rankl and W. Effing. Smart Card Handbook. Wiley, 2004.
[50]
L. Rong, Z. Jianzhong, L. Ming, and H. Xiangfeng. A wearable acceleration sensor system for gait recognition. In Proc. Industrial Electronics and Applications, pages 2654--2659, May 2007.
[51]
H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spoken word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 26(1):43--49, Feb. 1978.
[52]
S. Sarkar, P. J. Phillips, Z. Liu, I. R. Vega, P. Grother, and K. W. Bowyer. The humanid gait challenge problem: data sets, performance, and analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(2):162--177, Feb. 2005.
[53]
A. Savitzky and M. J. E. Golay. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36(8):1627--1639, 1964.
[54]
E. S. Sazonov, T. Bumpus, S. Zeigler, and S. Marocco. Classification of plantar pressure and heel acceleration patterns using neural networks. In Proc. Neural Networks 2005, volume 5, pages 3007--3010, July 2005.
[55]
S. Sprager and D. Zazula. A cumulant-based method for gait identification using accelerometer data with principal component analysis and support vector machine. WSEAS Transactions on Signal Processing, 5(11):369--378, Nov. 2009.
[56]
M. Tamviruzzaman, S. I. Ahamed, C. S. Hasan, and C. O'brien. ePet: When cellular phone learns to recognize its owner. In Proc. Assurable and Usable Security Configuration (SafeConfig) 2009, pages 13--18, NY, USA, 2009. ACM.
[57]
M. Tistarelli and E. Grosso. Active vision-based face authentication. Image and Vision Computing, 18(4):299--314, 2000.
[58]
U. Uludag and A. K. Jain. Attacks on biometric systems: a case study in fingerprints. In Security, Steganography, and Watermarking of Multimedia Contents VI, volume 5306 of Society of Photo-Optical Instrumentation Engineers (SPIE), pages 622--633, June 2004.
[59]
D. Van Bruggen, S. Liu, M. Kajzer, A. Striegel, C. R. Crowell, and J. D'Arcy. Modifying smartphone user locking behavior. In Proc. SOUPS 2013, pages 10:1--10:14, NY, USA, 2013. ACM.
[60]
D. Vermoen, M. Witteman, and G. N. Gaydadjiev. Reverse engineering java card applets using power analysis. In Proc. Information Security Theory and Practices (IFIP) 2007, pages 138--149. Springer, 2007.
[61]
B. Vibert, C. Rosenberger, and A. Ninassi. Security and performance evaluation platform of biometric match on card. In 2013 World Congress on Computer and Information Technology (WCCIT), pages 1--6, June 2013.
[62]
X. Wang, Y. Li, and F. Qiao. Gait authentication based on multi-criterion model of acceleration features. In Proc. Modelling, Identification and Control (ICMIC) 2010, pages 664--669, July 2010.
[63]
D. Winter. Biomechanics and Motor Control of Human Movement. Wiley, 2004.

Cited By

View all
  • (2021)Lightweight and Secure Face-based Active Authentication for Mobile UsersIEEE Transactions on Mobile Computing10.1109/TMC.2021.3106256(1-1)Online publication date: 2021
  • (2018)Mobile Match-on-Card Authentication Using Offline-Simplified Models with Gait and Face BiometricsIEEE Transactions on Mobile Computing10.1109/TMC.2018.281288317:11(2578-2590)Online publication date: 1-Nov-2018

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Other conferences
MoMM '16: Proceedings of the 14th International Conference on Advances in Mobile Computing and Multi Media
November 2016
363 pages
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

In-Cooperation

  • @WAS: International Organization of Information Integration and Web-based Applications and Services

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 28 November 2016

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Acceleration
  2. authentication
  3. gait
  4. match-on-card
  5. mobile biometrics
  6. smart card

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

MoMM '16

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)3
  • Downloads (Last 6 weeks)2
Reflects downloads up to 29 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2021)Lightweight and Secure Face-based Active Authentication for Mobile UsersIEEE Transactions on Mobile Computing10.1109/TMC.2021.3106256(1-1)Online publication date: 2021
  • (2018)Mobile Match-on-Card Authentication Using Offline-Simplified Models with Gait and Face BiometricsIEEE Transactions on Mobile Computing10.1109/TMC.2018.281288317:11(2578-2590)Online publication date: 1-Nov-2018

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media