Nothing Special   »   [go: up one dir, main page]

skip to main content
10.5555/2648668.2648763acmconferencesArticle/Chapter ViewAbstractPublication PagesislpedConference Proceedingsconference-collections
research-article

Hardware acceleration for similarity measurement in natural language processing

Published: 04 September 2013 Publication History

Abstract

The continuation of Moore's law scaling, but in the absence of Dennard scaling, motivates an emphasis on energy-efficient accelerator-based designs for future applications. In natural language processing, the conventional approach to automatically analyze vast text collections---using scale-out processing---incurs high energy and hardware costs since the central compute-intensive step of similarity measurement often entails pair-wise, all-to-all comparisons. We propose a custom hardware accelerator for similarity measures that leverages data streaming, memory latency hiding, and parallel computation across variable-length threads. We evaluate our design through a combination of architectural simulation and RTL synthesis. When executing the dominant kernel in a semantic indexing application for documents, we demonstrate throughput gains of up to 42x and 58x lower energy per similarity-computation compared to an optimized software implementation, while requiring less than 1.3% of the area of a conventional core.

References

[1]
R. J. Bayardo, Y. Ma, and R. Srikant. Scaling Up All Pairs Similarity Search. In Proceedings of the 16th International Conference on World Wide Web, WWW '07, pages 131--140, 2007.
[2]
N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood. The gem5 Simulator. SIGARCH Comput. Archit. News, 39(2): 1--7, Aug. 2011.
[3]
S. Borkar and A. A. Chien. The Future of Microprocessors. Commun. ACM, 54(5): 67--77, May 2011.
[4]
A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig. Syntactic Clustering of the Web. Comput. Netw. ISDN Syst., 29(8--13), 1997.
[5]
T.-W. Chen and S.-Y. Chien. Flexible Hardware Architecture of Hierarchical K-Means Clustering for Large Cluster Number. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 19(8), 2011.
[6]
J. Cho, N. Shivakumar, and H. Garcia-Molina. Finding Replicated Web Collections. SIGMOD Rec., 29(2): 355--366, May 2000.
[7]
B. Ding and A. C. König. Fast set intersection in memory. Proc. VLDB Endow., 4(4): 255--266, Jan. 2011.
[8]
G. Erkan and D. R. Radev. LexRank: Graph-Based Lexical Centrality as Salience in Text Summarization. J. Artif. Int. Res., 22(1), Dec. 2004.
[9]
H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger. Dark Silicon and the End of Multicore Scaling. In Computer Architecture (ISCA), 2011 38th Annual Intl. Symposium on, 2011.
[10]
S. Fushimi and M. Kitsuregawa. GREO: A Commercial Database Processor Based on a Pipelined Hardware Sorter. In Proceedings of the 1993 ACM SIGMOD international conference on Management of data, SIGMOD '93, pages 449--452, 1993.
[11]
J. Leverich and C. Kozyrakis. On the Energy (In)efficiency of Hadoop Clusters. SIGOPS Operating Systems Review, 44(1), 2010.
[12]
S. Li, J.-H. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi. McPAT: An Integrated Power, Area, and Timing Modeling Framework for Multicore and Manycore Architectures. In Microarchitecture, 2009. MICRO-42. 42nd Annual IEEE/ACM International Symposium on, 2009.
[13]
J. Moscola, Y. Cho, and J. Lockwood. Hardware-Accelerated Parser for Extraction of Metadata in Semantic Network Content. In Aerospace Conference, 2007 IEEE, pages 1--8, March 2007.
[14]
D. Perera and K. F. Li. On-Chip Hardware Support for Similarity Measures. In Communications, Computers and Signal Processing, 2007. PacRim 2007. IEEE Pacific Rim Conference on, pages 354--358, 2007.
[15]
D. Perera and K. F. Li. Hardware Acceleration for Similarity Computations of Feature Vectors. Electrical and Computer Engineering, Canadian Journal of, 33(1): 21--30, 2008.
[16]
V. Qazvinian and D. R. Radev. Scientific Paper Summarization Using Citation Summary Networks. In Proceedings of the 22nd International Conference on Computational Linguistics, COLING '08, 2008.
[17]
A. Raghavan, Y. Luo, A. Chandawalla, M. Papaefthymiou, K. P. Pipe, T. Wenisch, and M. Martin. Computational Sprinting. In High Performance Computer Architecture (HPCA), 2012 IEEE 18th International Symposium on, pages 1--12, 2012.
[18]
P. Roy, J. Teubner, and G. Alonso. Efficient Frequent Item Counting in Multi-Core Hardware. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge discovery and data mining, KDD '12, pages 1451--1459, 2012.
[19]
M. Sahami and T. D. Heilman. A Web-Based Kernel Function for Measuring the Similarity of Short Text Snippets. In Proceedings of the 15th International conference on World Wide Web, WWW '06, 2006.
[20]
B. Schlegel, T. Willhalm, and W. Lehner. Fast Sorted-Set Intersection using SIMD Instructions. ADMS Workshop 2011, 2011.
[21]
E. Spertus, M. Sahami, and O. Buyukkokten. Evaluating Similarity Measures: A Large-Scale Study in the Orkut Social Network. In Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining, KDD '05, pages 678--684, 2005.
[22]
Synopsys. DesignWare Building Blocks. Synopsys Inc., 2011.
[23]
L. Tan and T. Sherwood. A High Throughput String Matching Architecture for Intrusion Detection and Prevention. In Computer Architecture, 2005. ISCA '05. Proceedings. 32nd International Symposium on, 2005.
[24]
M. Taylor. Is Dark Silicon Useful? Harnessing the Four Horsemen of the Coming Dark Silicon Apocalypse. In Design Automation Conference (DAC), 2012 49th ACM/EDAC/IEEE, pages 1131--1136, 2012.
[25]
D. Terdiman. CNET: Twitter hits half a billion tweets a day. http://news.cnet.com/8301-1023_3-57541566-93/report-twitter-hits-half-a-billion-tweets-a-day/.
[26]
D. Wu, F. Zhang, N. Ao, F. Wang, J. Liu, and G. Wang. A Batched GPU Algorithm for Set Intersection. In Pervasive Systems, Algorithms, and Networks (ISPAN), 2009 10th International Symposium on, 2009.

Cited By

View all
  • (2017)A novel way to efficiently simulate complex full systems incorporating hardware acceleratorsProceedings of the Conference on Design, Automation & Test in Europe10.5555/3130379.3130538(658-661)Online publication date: 27-Mar-2017
  • (2016)ASIC cloudsACM SIGARCH Computer Architecture News10.1145/3007787.300115644:3(178-190)Online publication date: 18-Jun-2016
  • (2016)ASIC cloudsProceedings of the 43rd International Symposium on Computer Architecture10.1109/ISCA.2016.25(178-190)Online publication date: 18-Jun-2016

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
ISLPED '13: Proceedings of the 2013 International Symposium on Low Power Electronics and Design
September 2013
440 pages
ISBN:9781479912353

Sponsors

Publisher

IEEE Press

Publication History

Published: 04 September 2013

Check for updates

Author Tags

  1. cosine similarity
  2. hardware acceleration
  3. natural language processing

Qualifiers

  • Research-article

Conference

ISLPED'13
Sponsor:

Acceptance Rates

Overall Acceptance Rate 398 of 1,159 submissions, 34%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)3
  • Downloads (Last 6 weeks)0
Reflects downloads up to 18 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2017)A novel way to efficiently simulate complex full systems incorporating hardware acceleratorsProceedings of the Conference on Design, Automation & Test in Europe10.5555/3130379.3130538(658-661)Online publication date: 27-Mar-2017
  • (2016)ASIC cloudsACM SIGARCH Computer Architecture News10.1145/3007787.300115644:3(178-190)Online publication date: 18-Jun-2016
  • (2016)ASIC cloudsProceedings of the 43rd International Symposium on Computer Architecture10.1109/ISCA.2016.25(178-190)Online publication date: 18-Jun-2016

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media