Nothing Special   »   [go: up one dir, main page]

skip to main content
10.5555/2577101.2577132acmotherconferencesArticle/Chapter ViewAbstractPublication PagesihcConference Proceedingsconference-collections
research-article

Proposta de um framework para visualização de dados agregados por similaridade para auxiliar consultas durante a navegação na web

Published: 08 October 2013 Publication History

Abstract

In the last decade, several specialized tools have been created upon similarity functions that, given a keyword and a context, determine the degree of similarity (or probability) that information in a dataset corresponds to the user's query. Quite often such tools are meant for experts and require training and knowledge on the application domain to be used. However, given the huge amount of information available on the Web, resolving ambiguities becomes a daily task for most users. In this paper, we present a technique for embedding into a Web browser tools for solving ambiguities between keywords that users might found while navigating the Web. A prototype illustrating such techniques has been developed as a proof of concept. The tool presents the degree of similarity directly on Web pages as a contextual help menu. The overall approach includes different datasets and similarity functions and is flexible enough to support extensions for covering additional contexts of use.

References

[1]
Baeza-Yates, R., Neto, B. R. Modern Information Retrieval. New York, ACM Press Books/Addison Wesley (1999).
[2]
Chau, M. Visualizing Web search results using glyphs: Design and evaluation of a flower metaphor. ACM Transactions on Management Information Systems. 2(1). ACM (2011). Article 2.
[3]
Chen, F. R., Farahat, A. O., Brant, T. Multiple similarity measures and source-pair information in story link detection. In HLT/NAACL (2004), 313--320
[4]
Dork, M.; Carpendale, S.; Collins, C.; Williamson, C. VisGets: Coordinated visualizations for web-based information exploration and discovery. IEEE Trans. on Visualization and Computer Graphics, 14(6). IEEE (2008), 1205--1212.
[5]
Dorneles, C. F., Gonçalves, R., dos Santos Mello, R. Approximate data instance matching: a survey. Knowledge Information Systems, 27(1): 1--21 (2011).
[6]
Đurić, Z., Gašević, D. A Source Code Similarity System for Plagiarism Detection. Computer Journal, 56(1) (2013), 70--86.
[7]
Eler, D. M.; Nakazaki, M.; Paulovich, F. V.; Santos, D. P.; Oliveira, M. C. F.; Batista Neto, J. E. S.; Minghim, R. Multidimensional visualization to support analysis of image collections. In SIBGRAPI 2008. IEEE (2008), 289--296.
[8]
Firmenich, S., Gaits, G, Gordillo, S., Rossi, G., Winckler, M. Supporting Users Tasks with Personal Information Management and Web Forms Augmentation. ICWE 2012: 268--282.
[9]
Firmenich, S., Winckler, M., Rossi, G. A Framework for Concern-Sensitive, Client-Side Adaptation. In ICWE Springer (2011), LNCS 6757, 198--213.
[10]
Fleming, J. Web Navigation: Designing the User Experience. O'Reilly, 1998. 264 p.
[11]
Hearst, M. A. TileBars: Visualization of Term Distribution Information in Full Text Information Access. In CHI. ACM (1995).
[12]
Hoeber, O., Yang, D. X. A comparative user study of web search interfaces: HotMap, Concept Highlighter, and Google. In IEEE/WIC/ACM International Conference on Web Intelligence. IEEE(2006).
[13]
Keim, D. A. Information Visualization and Visual Data Mining. IEEE Transactions on Visualization and Computer Graphics, 8(1). IEEE (2002), 1--8.
[14]
Navarro, G. A guided tour to approximate string matching. ACM Computing Surveys, 33(1). ACM(2001), 31--88.
[15]
Nichele, C. M., Becker, K. Clustering Web Sessions by Levels of Page Similarity. In PAKDD'2006. Springer (2006), 346--350.
[16]
Paulovich, F. V., Pinho, R., Botha, C. P., Heijs, A., Minghim, R. PEx-Web: Content-based visualization of web search results. In IV'08. IEEE (2008), 208--214.
[17]
Paulovich, F. V., Telles, G. P., Toledo, F. M. B., Minghim, R., Nonato, L. G. Semantic Wordification of Document Collections. Computer Graphics Forum, 31(3). Eurographics (2012), 1145--1153.
[18]
Spoerri, A. Visual Mashup of Text and Media Search Results. In IV'07. IEEE (2007).
[19]
Tejada, S.; Knoblock, C. A., Minton, S. Learning object identification rules for information integration, Information Systems, 26(8). (2001), 607--633.
[20]
von Landesberger, T., Kuijper, A., Schreck, T., Kohlhammer, J., van Wijk, J. J., Fekete, J.-D. and Fellner, D. W. Visual Analysis of Large Graphs: State-of-the-Art and Future Research Challenges. Computer Graphics Forum, 30(6), Eurographics (2011), 1719--1749.
[21]
Ward, M., Grinstein, G., Keim, D. Interactive Data Visualization: Foundations, Techniques, and Applications. Nantick, A K Peters/CRC Press (2010). 513 p.

Information & Contributors

Information

Published In

cover image ACM Other conferences
IHC '13: Proceedings of the 12th Brazilian Symposium on Human Factors in Computing Systems
October 2013
371 pages
ISBN:9788576692782

Sponsors

  • SBC: Brazilian Computer Society
  • UFAM: Federal University Of Amazonas
  • PUC-Rio

In-Cooperation

Publisher

Brazilian Computer Society

Porto Alegre, Brazil

Publication History

Published: 08 October 2013

Check for updates

Author Tags

  1. contextual help
  2. similarity functions
  3. web navigation

Qualifiers

  • Research-article

Conference

IHC '13
Sponsor:
  • SBC
  • UFAM

Acceptance Rates

Overall Acceptance Rate 331 of 973 submissions, 34%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 129
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 20 Nov 2024

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media