Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1109/SC.2005.28acmconferencesArticle/Chapter ViewAbstractPublication PagesscConference Proceedingsconference-collections
Article

Full Electron Calculation Beyond 20,000 Atoms: Ground Electronic State of Photosynthetic Proteins

Published: 12 November 2005 Publication History

Abstract

A full electron calculation for the photosynthetic reaction center of Rhodopseudomonas viridis was performed by using the fragment molecular orbital (FMO) method on a massive cluster computer. The target system contains 20,581 atoms and 77,754 electrons, which was divided into 1,398 fragments. According to the FMO prescription, the calculations of the fragments and pairs of the fragments were conducted to obtain the electronic state of the system. The calculation at RHF/6-31G* level of theory took 72.5 hours with 600 CPUs. The CPUs were grouped into several workers, to which the calculations of the fragments were dispatched. An uneven CPU grouping, where two types of workers are generated, was shown to be efficient.

References

[1]
BERMAN, H. M., WESTBROOK, J., FENG, Z., GILLILAND, G., BHAT, T. N., WEISSIG, H., SHINDYALOV, I. N., AND BOURNE, P. E. 2000. The protein data bank. Nucleic Acids Research 28, 235-242.
[2]
BRETON, J., MARTIN, J.-L., MIGUS, A., ANTONETTI, A., AND ORSZAG, A. 1986. Femtosecond spectroscopy of excitation energy transfer and initial charge separation in the reaction center of the photosynthetic bacterium Rhodopseudomonas viridis. Proc. Natn. Acad. Sci. USA 83, 5121-5125.
[3]
DEISENHOFER, J., EPP, O., MIKI, K., HUBER, R., AND MICHEL, H. 1985. Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3 Å resolution. Nature 318, 618-624.
[4]
DEISENHOFER, J., EPP, O., SINNING, I., AND MICHEL, H. 1995. Crystallographic refinement at 2.3 Å resolution and refined model of the photosynthetic reaction centre from Rhodopseudomonas viridis. J. Mol. Biol. 246, 429-457.
[5]
FEDOROV, D. G. AND KITAURA, K. 2004. The importance of three-body terms in the fragment molecular orbital method. J. Chem. Phys. 120, 6833-6840.
[6]
FEDOROV, D. G., OLSON, R. M., KITAURA, K., GORDON, M. S., AND KOSEKI, S. 2004. A new hierarchical parallelization scheme: Generalized distributed data interface (GDDI), and an application to the fragment molecular orbital method (FMO). J. Comp. Chem. 25, 872-880.
[7]
FLETCHER, G. D., SCHMIDT, M. W., BODE, B. M., AND GORDON, M. S. 2000. The distributed data interface in GAMESS. Comp. Phys. Comm. 128, 190-200.
[8]
GILLILAN, R. E. AND WOOD, F. 1995. Visualization, virtual reality, and animation within the data flow model of computing. Computer Graphics 29, 55-58.
[9]
HÖRBER, J. K. H., GÖBEL, W., OGRODNIK, A., MICHEL-BEYERLE, M. E., AND COGDELL, R. J. 1986. Time-resolved measurements of fluorescence from reaction centers of Rhodopseudomonas viridis and the effect of menaquinone reduction. FEBS Lett. 198, 268-272.
[10]
INABA, T., KASHIWAGI, H., AND SATO, F. 2005. An all-electron calculation on insulin hexamer by the density functional program ProteinDF. In WATOC 2005 conference proceedings, C. Esterhuysen, H. Rossouw, G. Venter, and J. Dillen, Eds. 145.
[11]
ISHIDA, T. AND KATO, S. 2003. Theoretical perspectives on the reaction mechanism of serine proteases: The reaction free energy profiles of the acylation process. J. Am. Chem. Soc. 125, 12035-12048.
[12]
KITAURA, K., IKEO, E., ASADA, T., NAKANO, T., AND UEBAYASI, M. 1999. Fragment molecular orbital method: an approximate computational method for large molecules. Chem. Phys. Lett. 313, 701-706.
[13]
NAKANO, T., KAMINUMA, T., SATO, T., AKIYAMA, Y., UEBAYASI, M., AND KITAURA, K. 2000. Fragment molecular orbital method: application to polypeptides. Chem. Phys. Lett. 318, 614- 618.
[14]
NAKANO, T., KAMINUMA, T., SATO, T., FUKUZAWA, K., AKIYAMA, Y., UEBAYASI, M., AND KITAURA, K. 2002. Fragment molecular orbital method: use of approximate electrostatic potential. Chem. Phys. Lett. 351, 475-480.
[15]
SCHMIDT, M. W., BALDRIDGE, K. K., BOATZ, J. A., ELBERT, S. T., GORDON, M. S., JENSEN, J. H., KOSEKI, S., MATSUNAGA, N., NGUYEN, K. A., SU, S. J., WINDUS, T. L., DUPUIS, M., AND MONTGOMERY, J. A. 1993. General atomic and molecular electronic structure system. J. Comp. Chem. 14, 1347-1363.
[16]
SCORE. PC Cluster Consortium. http://www.pccluster.org.
[17]
SEYMOUR, K., NAKADA, H., MATSUOKA, S., DONGARRA, J., LEE, C., AND CASANOVA, H. 2002. Overview of GridRPC: A remote procedure call API for grid computing. Lect. Note Comp. Sci 2536, 274-278.
[18]
TANAKA, Y., NAKADA, H., SEKIGUCHI, S., SUZUMURA, T., AND MATSUOKA, S. 2003. Ninf-G: A reference implementation of RPC-based programming middleware for grid computing. J. Grid Comp. 1, 41-51.
[19]
ZINTH, W., HUPPMANN, P., ARLT, T., AND WACHTVEITL, J. 1998. Ultrafast spectroscopy of the electron transfer in photosynthetic reaction centres: towards a better understanding of electron transfer in biological systems. Phil. Trans. Roy. Soc. Lond. A. 356, 465-476.

Cited By

View all
  • (2014)Metascalable quantum molecular dynamics simulations of hydrogen-on-demandProceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis10.1109/SC.2014.59(661-673)Online publication date: 16-Nov-2014
  • (2012)Heuristic static load-balancing algorithm applied to the fragment molecular orbital methodProceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis10.5555/2388996.2389072(1-13)Online publication date: 10-Nov-2012
  • (2008)De Novo Ultrascale Atomistic Simulations On High-End Parallel SupercomputersInternational Journal of High Performance Computing Applications10.1177/109434200708501522:1(113-128)Online publication date: 1-Feb-2008
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
SC '05: Proceedings of the 2005 ACM/IEEE conference on Supercomputing
November 2005
829 pages
ISBN:1595930612

Sponsors

Publisher

IEEE Computer Society

United States

Publication History

Published: 12 November 2005

Check for updates

Qualifiers

  • Article

Conference

SC '05
Sponsor:

Acceptance Rates

SC '05 Paper Acceptance Rate 62 of 260 submissions, 24%;
Overall Acceptance Rate 1,516 of 6,373 submissions, 24%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)3
  • Downloads (Last 6 weeks)1
Reflects downloads up to 14 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2014)Metascalable quantum molecular dynamics simulations of hydrogen-on-demandProceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis10.1109/SC.2014.59(661-673)Online publication date: 16-Nov-2014
  • (2012)Heuristic static load-balancing algorithm applied to the fragment molecular orbital methodProceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis10.5555/2388996.2389072(1-13)Online publication date: 10-Nov-2012
  • (2008)De Novo Ultrascale Atomistic Simulations On High-End Parallel SupercomputersInternational Journal of High Performance Computing Applications10.1177/109434200708501522:1(113-128)Online publication date: 1-Feb-2008
  • (2007)GridFMO Quantum chemistry of proteins on the gridProceedings of the 8th IEEE/ACM International Conference on Grid Computing10.1109/GRID.2007.4354128(153-160)Online publication date: 19-Sep-2007
  • (2006)Sustainable adaptive grid supercomputingProceedings of the 2006 ACM/IEEE conference on Supercomputing10.1145/1188455.1188566(106-es)Online publication date: 11-Nov-2006

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media