Nothing Special   »   [go: up one dir, main page]

skip to main content
10.5555/1070432.1070523acmconferencesArticle/Chapter ViewAbstractPublication PagessodaConference Proceedingsconference-collections
Article

Ordinal embeddings of minimum relaxation: general properties, trees, and ultrametrics

Published: 23 January 2005 Publication History

Abstract

We introduce a new notion of embedding, called minimum-relaxation ordinal embedding, parallel to the standard notion of minimum-distortion (metric) embedding. In an ordinal embedding, it is the relative order between pairs of distances, and not the distances themselves, that must be preserved as much as possible. The (multiplicative) relaxation of an ordinal embedding is the maximum ratio between two distances whose relative order is inverted by the embedding. We develop several worst-case bounds and approximation algorithms on ordinal embedding. In particular, we establish that ordinal embedding has many qualitative differences from metric embedding, and capture the ordinal behavior of ultrametrics and shortest-path metrics of unweighted trees.

References

[1]
R. Agarwala, V. Bafna, M. Farach, M. Paterson, and M. Thorup. On the approximability of numerical taxonomy (fitting distances by tree metrics), SIAM J. Comput., 28 (1999), pp. 1073--1085.
[2]
N. Alon, Tools from higher algebra, in Handbook of combinatorics, R. L. Graham, M. Grötschel, and L. Lovász, eds., vol. 2, MIT Press, 1995, ch. 32, pp. 1749--1783.
[3]
N. Alon, P. Frankl, and V. Rödl, Geometrical realization of set systems and probabilistic communication complexity, in Proceedings of the 26th Annual Symposium on Foundations of Computer Science, Portland, 1985, pp. 277--280.
[4]
R. Babilon, J. Matoušek, J. Maxová, and P. Valtr, Low-distortion embeddings of trees. Journal of Graph Algorithms and Applications, 7 (2003), pp. 399--409.
[5]
M. Bădoiu, K. Dhamdhere, A. Gupta, Y. Rabinovich, H. Raecke, R. Ravi, and A. Sidiropoulos, Approximation algorithms for low-distortion embeddings into low-dimensional spaces, in Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, Vancouver, 2005.
[6]
Y. Bartal and M. Mendel, Dimension reduction for ultrametrics, in Proceedings of the 15th ACM-SIAM Symp. on Discrete Algorithms, 2004, pp. 664--665.
[7]
Y. Bilu and N. Linial, Monotone maps, sphericity and bounded second eigenvalue. arXiv:math.CO/0401293, 2004.
[8]
J. Bourgain, On Lipschitz embedding of finite metric spaces in Hilbert space, Israel J. Math., 52 (1985), pp. 46--52.
[9]
B. Brinkman and M. Charikar, On the impossibility of dimension reduction in l1, in Proc. of the 44th Symposium on Foundations of Computer Science, 2003, pp. 514--523.
[10]
M. Bădoiu, Approximation algorithm for embedding metrics into a two-dimensional space, in Procedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, 2003, pp. 434--443.
[11]
M. Bădoiu, E. D. Demaine, M. Hajiaghayi, and P. Indyk. Low-dimensional embedding with extra information, in Proceedings of the 20th Annual ACM Symposium on Computational Geometry, Brooklyn, New York, June 2004.
[12]
B. Chor and M. Sudan, A geometric approach to betweennes, SIAM J. Discrete Math., 11 (1998), pp. 511--523.
[13]
J. P. Cunningham and R. N. Shepard, Monotone mapping of similarities into a general metric space. Journal of Mathematical Psychology, 11 (1974), pp. 335--364.
[14]
P. Erdös and H. Sachs, Reguläre Graphen gegebener Taillenweite mit minimaler Knotenzahl, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe, 12 (1963), pp. 251--257.
[15]
M. Farach and S. Kannan, Efficient algorithms for inverting evolution, J. ACM, 46 (1999), pp. 437--449.
[16]
M. Farach, S. Kannan, and T. Warnow. A robust model for finding optimal evolutionary trees, Algorithmica, 13 (1995), pp. 155--179.
[17]
A. Gupta, Embedding tree metrics into low-dimensional Euclidean spaces, Discrete Comput. Geom., 24:105--116 (2000).
[18]
E. F. Harding, The number of partitions of a set of N points in k dimensions induced by hyperplanes, Proceedings of the Edinburgh Mathematical Society, Series II, 15 (1966/1967), pp. 285--289.
[19]
J. Håstad, L. Ivansson, and J. Lagergren, Fitting points on the real line and its application to RH mapping, Journal of Algorithms, 49 (2003), pp. 42--62.
[20]
W. Holman, The relation between hierarchical and euclidean models for psychological distances, Psychometrika, 37 (1972), pp. 417--423.
[21]
P. Indyk and J. Matoušek, Low-distortion embeddings of finite metric spaces, in Handbook of Discrete and Computational Geometry, J. E. Goodman and J. O'Rourke, eds., CRC Press, second ed., 2004, ch. 8, pp. 177--196.
[22]
L. Ivansson, Computational Aspects of Radiation Hybrid, PhD thesis, Royal Institute of Technology, 2000.
[23]
W. B. Johnson and J. Lindenstrauss, Extensions of lipshitz mapping into hilbert space, Contemporary Mathematics, 26 (1984), pp. 189--206.
[24]
J. B. Kruskal, Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis, Psychometrika, 29 (1964), pp. 1--28.
[25]
J. B. Kruskal, Non-metric multidimensional scaling, Psychometrika, 29 (1964), pp. 115--129.
[26]
J. R. Lee and A. Naor, Embedding the diamond graph in Lp and dimension reduction in L1, Geometric and Functional Analysis, 14 (2004), pp. 745--747.
[27]
N. Linial, E. London, and Y. Rabinovich, The geometry of graphs and some of its algorithmic applications, Combinatorica, 15 (1995), pp. 215--245.
[28]
J. Matoušek, On embedding expanders into lp spaces, Israel Journal of Mathematics, 102 (1997), pp. 189--197.
[29]
J. Opatrny, Total ordering problem, SIAM J. Computing, 8 (1979), pp. 111--114.
[30]
R. Shah and M. Farach-Colton, On the complexity of ordinal clustering, Journal of Classification (2004). To appear.
[31]
R. N. Shepard, Multidimensional scaling with unknown distance function I, Psychometrika, 27 (1962), pp. 125--140.
[32]
W. S. Torgerson, Multidimensional scaling I: Theory and method, Psychometrika, 17 (1952), pp. 401--414.
[33]
H. E. Warren, Lower bounds for approximation by nonlinear manifolds, Trans. Amer. Math. Soc., 133:167--178 (1968).

Cited By

View all
  • (2007)Approximation algorithms for embedding general metrics into treesProceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms10.5555/1283383.1283438(512-521)Online publication date: 7-Jan-2007
  • (2007)Geographic Routing Using Hyperbolic SpaceProceedings of the IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications10.1109/INFCOM.2007.221(1902-1909)Online publication date: 1-May-2007
  • (2006)Embedding ultrametrics into low-dimensional spacesProceedings of the twenty-second annual symposium on Computational geometry10.1145/1137856.1137886(187-196)Online publication date: 5-Jun-2006
  • Show More Cited By
  1. Ordinal embeddings of minimum relaxation: general properties, trees, and ultrametrics

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      SODA '05: Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms
      January 2005
      1205 pages
      ISBN:0898715857

      Sponsors

      Publisher

      Society for Industrial and Applied Mathematics

      United States

      Publication History

      Published: 23 January 2005

      Check for updates

      Qualifiers

      • Article

      Acceptance Rates

      Overall Acceptance Rate 411 of 1,322 submissions, 31%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)1
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 20 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2007)Approximation algorithms for embedding general metrics into treesProceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms10.5555/1283383.1283438(512-521)Online publication date: 7-Jan-2007
      • (2007)Geographic Routing Using Hyperbolic SpaceProceedings of the IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications10.1109/INFCOM.2007.221(1902-1909)Online publication date: 1-May-2007
      • (2006)Embedding ultrametrics into low-dimensional spacesProceedings of the twenty-second annual symposium on Computational geometry10.1145/1137856.1137886(187-196)Online publication date: 5-Jun-2006
      • (2005)On the hardness of embeddings between two finite metricsProceedings of the 32nd international conference on Automata, Languages and Programming10.1007/11523468_114(1412-1423)Online publication date: 11-Jul-2005

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media