Nothing Special   »   [go: up one dir, main page]

skip to main content
10.5555/1070432.1070590acmconferencesArticle/Chapter ViewAbstractPublication PagessodaConference Proceedingsconference-collections
Article

Coins make quantum walks faster

Published: 23 January 2005 Publication History

Abstract

We show how to search N items arranged on a √N × √N grid in time O(√N log N), using a discrete time quantum walk. This result for the first time exhibits a significant difference between discrete time and continuous time walks without coin degrees of freedom. since it has been shown recently that such a continuous time walk needs time Ω(N) to perform the same task. Our result improves on a previous bound for quantum local search by Aaronson and Ambainis. We generalize our result to 3 and more dimensions where the walk yields the optimal performance of O(√N) and give several extensions of quantum walk search algorithms and generic expressions for its performance for general graphs. The coin-flip operation needs to be chosen judiciously: we show that another "natural" choice of coin gives a walk that takes Ω(N) steps. We also show that in 2 dimensions it is sufficient to have a two-dimensional coin-space to achieve the time O(√N log N).

References

[1]
{AA03} S. Aaronson and A. Ambainis. Quantum search of spatial regions. In Proc. 44th Annual IEEE Symp. on Foundations of Computer Science (FOCS), pages 200--209, 2003.
[2]
{AAKV01} D. Aharonov, A. Ambainis, J. Kempe, and U. Vazirani. Quantum walks on graphs. In Proc. 33th STOC, pages 50--59, New York, NY, 2001. ACM.
[3]
{ABN+01} A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, and J. Watrous. One-dimensional quantum walks. In Proc. 33th STOC, pages 60--69, New York, NY, 2001. ACM.
[4]
{Amb04} A. Ambainis. Quantum walk algorithm for element distinctness. Proc. 45th FOCS, to appear, 2004. Also lanl-arXive quant-ph/0311001.
[5]
{AKR04} A. Ambainis, J. Kempe, A. Rivosh. Coins make quantum walks faster. Technical report, lanl-arXive quant-ph/0402107, 2004.
[6]
{Ben02} Paul Benioff. Space searches with a quantum robot. In Quantum computation and information (Washington, DC, 2000), volume 305 of Contemp. Math., pages 1--12. Amer. Math. Soc., Providence. RI, 2002.
[7]
{BHMT02} G. Brassard, P. Høyer, M. Mosca, and A. Tapp. Quantum amplitude amplification and estimation. In Quantum computation and information (Washington, DC, 2000), volume 305 of Contemp. Math., pages 53--74. Amer. Math. Soc., Providence, RI, 2002.
[8]
{CCD+03} A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. A. Spielman, Exponential algorithmic speedup by a quantum walk. In Proc. 35th STOC, pages 59--68, 2003. quant-ph/0209131.
[9]
{CE03} A. M. Childs and J. M. Eisenberg. Quantum algorithms for subset finding. Technical report, lanl-arXive quant-ph/0311038, 2003.
[10]
{CFG02} A. Childs, E. Farhi, and S. Gutmann. An example of the difference between quantum and classical random walks. Quantum Information Processing, 1:35, 2002. lanl-report quant-ph/0103020.
[11]
{CG03} A. M. Childs and J. Goldstone. Spatial search by quantum walk. Phys. Rev. A, 70:022314, 2004. Also lanl-report quant-ph/0306054, 2003.
[12]
{CG04} A. M. Childs and J. Goldstone. Spatial search and the Dirac equation. Technical report, lanl-arXive quant-ph/0405120, 2004.
[13]
{FG98} E. Farhi and S. Gutmann. Quantum computation and decision trees. Phys. Rev. A, 58:915--928, 1998.
[14]
{Gro96} L. Grover. A fast quantum mechanical algorithm for database search. In Proc. 28th STOC, pages 212--219, Philadelphia, Pennsylvania, 1996. ACM Press.
[15]
{Kem03a} J. Kempe. Quantum random walks - an introductory overview. Contemporary Physics, 44(4):302--327, 2003. lanl-arXive quant-ph/0303081.
[16]
{Kem03b} J. Kempe. Quantum walks hit exponentially faster. In RANDOM-APPROX 2003, Lecture Notes in Computer Science, pages 354--369, Heidelberg, 2003. Springer. lanl-arXiv quant-ph/0205083.
[17]
{Mey96} D. Meyer. From quantum cellular automata to quantum lattice gases. J. Stat. Phys., 85:551--574, 1996.
[18]
{MR95} R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.
[19]
{MR02} C. Moore and A. Russell. Quantum walks on the hypercube. In J. D. P. Rolim and S. Vadhan, editors, Proc. RANDOM 2002, pages 164--178, Cambridge, MA, 2002. Springer.
[20]
{MSS03} F. Magniez, M. Santha, and M. Szegedy. Quantum algorithms for the triangle problem. Proceedings of SODA'05, to appear. Also lanl-arXive quant-ph/0310134.
[21]
{SKW03} N. Shenvi, J. Kempe, and K. B. Whaley. A quantum random walk search algorithm. Phys. Rev. A, 67(5):052307, 2003. lanl-arXive quant-ph/0210064.
[22]
{She03} Neil Shenvi. Random Walk Simulations. unpublished.
[23]
{Sze04} M. Szegedy. Spectra of quantized walks and a √Δε rule, quant-ph/0401053.
[24]
{Sze04a} M. Szegedy. Quantum speedup of Markov chain based algorithms. Proceedings of FOCS'04, to appear.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
SODA '05: Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms
January 2005
1205 pages
ISBN:0898715857

Sponsors

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 23 January 2005

Check for updates

Qualifiers

  • Article

Acceptance Rates

Overall Acceptance Rate 411 of 1,322 submissions, 31%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)26
  • Downloads (Last 6 weeks)2
Reflects downloads up to 09 Feb 2025

Other Metrics

Citations

Cited By

View all

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media