Computer Science > Programming Languages
[Submitted on 11 Apr 2017]
Title:Compile-Time Extensions to Hybrid ODEs
View PDFAbstract:Reachability analysis for hybrid systems is an active area of development and has resulted in many promising prototype tools. Most of these tools allow users to express hybrid system as automata with a set of ordinary differential equations (ODEs) associated with each state, as well as rules for transitions between states. Significant effort goes into developing and verifying and correctly implementing those tools. As such, it is desirable to expand the scope of applicability tools of such as far as possible. With this goal, we show how compile-time transformations can be used to extend the basic hybrid ODE formalism traditionally supported in hybrid reachability tools such as SpaceEx or Flow*. The extension supports certain types of partial derivatives and equational constraints. These extensions allow users to express, among other things, the Euler-Lagrangian equation, and to capture practically relevant constraints that arise naturally in mechanical systems. Achieving this level of expressiveness requires using a binding time-analysis (BTA), program differentiation, symbolic Gaussian elimination, and abstract interpretation using interval analysis. Except for BTA, the other components are either readily available or can be easily added to most reachability tools. The paper therefore focuses on presenting both the declarative and algorithmic specifications for the BTA phase, and establishes the soundness of the algorithmic specifications with respect to the declarative one.
Submission history
From: EPTCS [view email] [via EPTCS proxy][v1] Tue, 11 Apr 2017 00:57:40 UTC (182 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.