Atmospheric Neutron Monitoring through Optical Fiber-Based Sensing
<p>Simulated neutron spectrum of the TRIUMF TNF facility, compared to the JEDEC atmospheric neutron reference spectrum. Accelerated tests were possible at a flux approximatively 10<sup>9</sup> times higher than on the Earth’s ground.</p> "> Figure 2
<p>eOTDR traces measured at 1625 nm before and at the end of the neutron irradiation (total fluence of ~7.1 × 10<sup>11</sup> n cm<sup>−2</sup>). Inset: schematic of the experimental setup used for the RIA measurement.</p> "> Figure 3
<p>RIA growth at 1625 nm in an 18 m long coil of the P-doped fiber exposed to the TNF neutron [10–400 MeV] fluence at room temperature (RT). In the inset the same results are illustrated in a log-log scale.</p> "> Figure 4
<p>Comparison between the dose dependence of the RIA, induced at 1625 nm by 40 keV X-rays and atmospheric neutrons in a phosphorus-doped single-mode optical fiber.</p> "> Figure 5
<p>Comparison between the fluence detection thresholds of fiber sensors operating at either around 1550 to 1625 nm, in the UV (around 300 nm) or in the visible (around 650 nm). The horizontal lines indicate the expected equivalent doses, depending on the flight parameters (altitude, duration: 1 hour (h), 1 day (d), 1 month (m)).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Armstrong, T.W.; Chandler, K.C.; Barish, J. Calculations of neutron flux spectra induced in the Earth’s atmosphere by galactic cosmic rays. J. Geophys. Res. 1973, 78, 2715–2726. [Google Scholar] [CrossRef] [Green Version]
- Sato, T.; Niita, K. Analytical Functions to Predict Cosmic-Ray Neutron Spectra in the Atmosphere. Radiat. Res. 2006, 166, 544–555. [Google Scholar] [CrossRef] [PubMed]
- Gordon, M.S.; Goldhagen, P.; Rodbell, K.P.; Zabel, T.H.; Tang, H.H.K.; Clem, J.M.; Bailey, P. Measurement of the flux and energy spectrum of cosmic-ray induced neutrons on the ground. IEEE Trans. Nucl. Sci. 2004, 51, 3427–3434. [Google Scholar] [CrossRef]
- Leray, J.L. Effects of atmospheric neutrons on devices, at sea level and in avionics embedded systems. Microelectron. Reliab. 2007, 47, 1827–1835. [Google Scholar]
- Ferlet-Cavrois, V.; Massengill, L.W.; Gouker, P. Single Event Transients in Digital CMOS—A Review. IEEE Trans. Nucl. Sci. 2013, 60, 1767–1790. [Google Scholar] [CrossRef]
- Nowicki, S.F.; Wender, S.A.; Mocko, M. The Los Alamos Neutron Science Center Spallation Neutron Sources. Phys. Proc. 2017, 90, 374–380. [Google Scholar] [CrossRef]
- Blackmore, E.W.; Dodd, P.E.; Shaneyfelt, M.R. Improved capabilities for proton and neutron irradiations at TRIUMF. In Proceedings of the 2003 IEEE Radiation Effects Data Workshop, Monterey, CA, USA, 25 July 2003; pp. 149–155. [Google Scholar]
- Bélanger-Champagne, C.; Blackmore, E.; Lindsay, C.; Hoehr, C.; Trinczek, M. Simulation and Measurements of Collimator Effects in Proton and Neutron Radiation Testing for Single-Event Effects. IEEE Trans. Nucl. Sci. 2020, 67, 161–168. [Google Scholar] [CrossRef]
- Girard, S.; Kuhnhenn, J.; Gusarov, A.; Brichard, B.; Van Uffelen, M.; Ouerdane, Y.; Boukenter, A.; Marcandella, C. Radiation Effects on Silica-based Optical Fibers: Recent Advances and Future Challenges. IEEE Trans. Nucl. Sci. 2013, 60, 2015–2036. [Google Scholar] [CrossRef]
- Girard, S.; Morana, A.; Ladaci, A.; Robin, T.; Mescia, L.; Bonnefois, J.-J.; Boutillier, M.; Mekki, J.; Paveau, A.; Cadier, B.; et al. Recent advances in radiation-hardened fiber-based technologies for space applications. J. Optics 2018, 20, 093001. [Google Scholar] [CrossRef] [Green Version]
- JEDEC Standard. Available online: https://www.jedec.org/standards-documents/docs/jesd-89a (accessed on 10 June 2020).
- Di Francesca, D.; Li Vecchi, G.; Girard, S.; Morana, A.; Reghioua, I.; Alessi, A.; Hoehr, C.; Robin, T.; Kadi, Y.; Brugger, M. Qualification and Calibration of Single Mode Phosphosilicate Optical Fiber for Dosimetry at CERN. J. Lightw. Techn. 2019, 37, 4643–4649. [Google Scholar] [CrossRef]
- Di Francesca, D.; Li Vecchi, G.; Girard, S.; Alessi, A.; Reghioua, I.; Boukenter, A.; Ouerdane, Y.; Kadi, Y.; Brugger, M. Radiation Induced Attenuation in Single-Mode Phosphosilicate Optical Fibers for Radiation Detection. IEEE Trans. Nucl. Sci. 2018, 65, 126–131. [Google Scholar] [CrossRef]
- Morana, A.; Girard, S.; Cannas, M.; Marin, E.; Marcandella, C.; Paillet, P.; Périsse, J.; Macé, J.-R.; Boscaino, R.; Nacir, B.; et al. Influence of neutron and gamma-ray irradiations on rad-hard optical fiber. Opt. Mat. Express 2015, 5, 898–911. [Google Scholar] [CrossRef]
- Benabdesselam, M.; Mady, F.; Girard, S.; Mebrouk, Y.; Duchez, J.B.; Gaillardin, M.; Paillet, P. Performance of Ge-doped Optical Fiber as a Thermoluminescent. IEEE Trans. Nucl. Sci. 2013, 60, 4251–4256. [Google Scholar] [CrossRef]
- Di Francesca, D.; Infantino, A.; Vecchi, G.; Girard, S.; Alessi, A.; Kadi, Y.; Brugger, M. Dosimetry Mapping of Mixed Field Radiation Environment through Combined Distributed Optical Fiber Sensing and FLUKA Simulation. IEEE Trans. Nucl. Sci. 2019, 66, 299–305. [Google Scholar] [CrossRef]
- Di Francesca, D.; Toccafondo, I.; Li Vecchi, G.; Calderini, S.; Girard, S.; Alessi, A.; Ferraro, R.; Danzeca, S.; Kadi, Y.; Brugger, M. Distributed Optical Fiber Radiation Sensing in the Proton Synchrotron Booster at CERN. IEEE Trans. Nucl. Sci. 2018, 65, 1639–1644. [Google Scholar] [CrossRef]
- Li Vecchi, G.; Di Francesca, D.; Ferraro, R.; Danzeca, S.; Stein, O.; Kadi, Y.; Brugger, M.; Girard, S. Distributed Optical Fiber Radiation Sensing at CERN. In Proceedings of the 9th International Particle Accelerator Conference, Vancouver, BC, Canada, 29 April–4 May 2018; pp. 2039–2042. [Google Scholar]
- Robinson, M.T. Basic physics of radiation damage production. J. Nucl. Mat. 1994, 216, 1–28. [Google Scholar] [CrossRef]
- Griscom, D.L.; Friebele, E.J.; Long, K.J.; Fleming, J.W. Fundamental defect centers in glass: Electron spin resonance and optical absorption studies of irradiated phosphorus-doped silica glass and optical fibers. J. Appl. Phys. 1983, 54, 3743. [Google Scholar] [CrossRef]
- Virmontois, C.; Goiffon, V.; Magnan, P.; Saint-Pé, O.; Girard, S.; Petit, S.; Rolland, G.; Bardoux, A. Total ionizing dose versus displacement damage dose induced dark current random telegraph signals in CMOS image sensors. IEEE Trans. Nucl. Sci. 2011, 58, 3085–3094. [Google Scholar] [CrossRef] [Green Version]
- Pfotzer, G. History of the use of Balloons in Scientific Experiments. Space Sci. Rev. 1972, 13, 199–242. [Google Scholar] [CrossRef]
- Campanella, C.; Morana, A.; Girard, S.; Guttilla, A.; Mady, F.; Benabdesselam, M.; Desjonqueres, H.; Monsanglant-Louvet, C.; Balland, C.; Marin, E.; et al. Combined Temperature and Radiation Effects on Radiation-Sensitive Single-Mode Optical Fibers. IEEE Trans. Nucl. Sci. 2020, 67, 1643–1649. [Google Scholar] [CrossRef]
- Girard, S.; Ouerdane, Y.; Marcandella, C.; Boukenter, A.; Quesnard, S.; Authier, N. Feasibility of radiation dosimetry with phosphorus-doped optical fibers in the ultraviolet and visible domain. J. Non-Cryst. Sol. 2011, 357, 1871–1874. [Google Scholar] [CrossRef]
- Di Francesca, D.; Girard, S.; Agnello, S.; Alessi, A.; Marcandella, C.; Paillet, P.; Ouerdane, Y.; Kadi, Y.; Brugger, M.; Boukenter, A. Combined Temperature Radiation Effects and Influence of Drawing Conditions on Phosphorous-Doped Optical Fibers. Phys. Stat. Solidi A 2019, 216, 1800553. [Google Scholar] [CrossRef]
- Girard, S.; Baggio, J.; Bisutti, J. 14-MeV Neutron, gamma-ray, and Pulsed X-Ray Radiation-Induced Effects on Multimode Silica-Based Optical Fibers. IEEE Trans. Nucl. Sci. 2006, 53, 3750–3757. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Girard, S.; Morana, A.; Hoehr, C.; Trinczek, M.; Vidalot, J.; Paillet, P.; Bélanger-Champagne, C.; Mekki, J.; Balcon, N.; Li Vecchi, G.; et al. Atmospheric Neutron Monitoring through Optical Fiber-Based Sensing. Sensors 2020, 20, 4510. https://doi.org/10.3390/s20164510
Girard S, Morana A, Hoehr C, Trinczek M, Vidalot J, Paillet P, Bélanger-Champagne C, Mekki J, Balcon N, Li Vecchi G, et al. Atmospheric Neutron Monitoring through Optical Fiber-Based Sensing. Sensors. 2020; 20(16):4510. https://doi.org/10.3390/s20164510
Chicago/Turabian StyleGirard, Sylvain, Adriana Morana, Cornelia Hoehr, Michael Trinczek, Jeoffray Vidalot, Philippe Paillet, Camille Bélanger-Champagne, Julien Mekki, Nicolas Balcon, Gaetano Li Vecchi, and et al. 2020. "Atmospheric Neutron Monitoring through Optical Fiber-Based Sensing" Sensors 20, no. 16: 4510. https://doi.org/10.3390/s20164510
APA StyleGirard, S., Morana, A., Hoehr, C., Trinczek, M., Vidalot, J., Paillet, P., Bélanger-Champagne, C., Mekki, J., Balcon, N., Li Vecchi, G., Campanella, C., Lambert, D., Marin, E., Boukenter, A., Ouerdane, Y., & Blackmore, E. (2020). Atmospheric Neutron Monitoring through Optical Fiber-Based Sensing. Sensors, 20(16), 4510. https://doi.org/10.3390/s20164510