Scaling of Beam Collective Effects with Bunch Charge in the CompactLight Free-Electron Laser
<p>6-dimensional normalized electron beam brightness from projected and core-slice parameters (left, adapted from [<a href="#B3-photonics-07-00125" class="html-bibr">3</a>]), and peak photon brilliance (right) for existing and planned short-wavelength FELs. The CompactLight electron beam brightness (filled markers) and brilliance are reported for the nominal bunch charge of 75 pC.</p> "> Figure 2
<p>CompactLight layout (not to scale) for the baseline and upgraded footprints, see text for details.</p> "> Figure 3
<p>From top to bottom, electron beam mean energy, rms bunch duration, betatron, and dispersion functions along the CompactLight accelerator. Soft and hard X-ray operation at repetition rates in the 0.1–1 kHz range is illustrated. Bunch durations correspond to the nominal bunch charge of 75 pC and to the final peak current of 0.35 kA and 4.5 kA. The soft X-ray operation at 0.1 kHz foresees beam extraction from the main linac at the intermediate energy of 2 GeV.</p> "> Figure 3 Cont.
<p>From top to bottom, electron beam mean energy, rms bunch duration, betatron, and dispersion functions along the CompactLight accelerator. Soft and hard X-ray operation at repetition rates in the 0.1–1 kHz range is illustrated. Bunch durations correspond to the nominal bunch charge of 75 pC and to the final peak current of 0.35 kA and 4.5 kA. The soft X-ray operation at 0.1 kHz foresees beam extraction from the main linac at the intermediate energy of 2 GeV.</p> "> Figure 4
<p>Normalized transverse projected emittance as function of the bunch charge (left) and peak current (right), and best fit from Equation (4) (left, “fit 2/3”), Equation (5) (left, “fit 1”) and Equation (6) (right). Data collected from [<a href="#B18-photonics-07-00125" class="html-bibr">18</a>,<a href="#B19-photonics-07-00125" class="html-bibr">19</a>,<a href="#B38-photonics-07-00125" class="html-bibr">38</a>,<a href="#B39-photonics-07-00125" class="html-bibr">39</a>,<a href="#B40-photonics-07-00125" class="html-bibr">40</a>,<a href="#B41-photonics-07-00125" class="html-bibr">41</a>].</p> "> Figure 5
<p>Horizontal normalized projected emittance growth from CSR longitudinal (L) and transverse (T) field in BC1 and BC2, for the bunch charge of 75 (left), 150 (middle) and 300 pC (right). See text for details.</p> "> Figure 6
<p>Percent projected emittance growth due to BBU through the linac downstream BC2 as function of the random rms misalignment of accelerating structures and average betatron function, for the bunch charge of (from left to right) 75, 150, and 300 pC. Beam and linac parameters are in <a href="#photonics-07-00125-t003" class="html-table">Table 3</a> and <a href="#photonics-07-00125-t005" class="html-table">Table 5</a>. The red dots and labels refer to PLACET results. Note the color scale spans over 2 orders of magnitude from low to high charge.</p> "> Figure 7
<p>Projected normalized relative emittance growth due to BBU along the linac downstream BC2 vs. average betatron function, at the bunch charge of (from left to right) 75, 150, and 300 pC. In each plot, solid (dashed) lines are for 100 µm (10 µm) RMS misalignment of accelerating structures and BPMs.</p> "> Figure 8
<p>FEL peak brilliance (Equation (13)) with 3-D corrections, as function of the beam normalized slice emittance and peak current at the undulator, in units of 10<sup>33</sup> #photons/sec/mm<sup>2</sup>/mrad<sup>2</sup>/0.1%bw, at the photon energy of 2 keV (left) and 16 keV (right). The electron beam energy is, respectively, 2 and 5.5 GeV.</p> "> Figure 9
<p>FEL pulse energy in mJ, as function of the beam normalized slice emittance and the bunch charge, at <a href="#photonics-07-00125-t002" class="html-table">Table 2</a>. keV (left) and 16 keV (right). The electron beam energy is, respectively, 2 and 5.5 GeV. The peak current is fixed to 4.5 kA in both cases.</p> "> Figure 10
<p>Left: total FEL pulse energy and fraction of transversely coherent pulse energy vs. bunch charge, at the photon energy of 16 keV. Emittance scaling with charge as in Equation (4) is assumed. Right: fraction of transversely coherent pulse energy vs. photon energy, at several bunch charges.</p> ">
Abstract
:1. Introduction
2. The Compact Light Free-Electron Laser
3. Space-Charge Force in the RF Photo-Injector
3.1. Model of Invariant Beam Envelope
3.2. Experimental Data and Emittance Scaling
4. Beam Collective Effects in the Main Linac
4.1. Coherent Synchrotron Radiation
4.2. Single-Bunch Beam Break-Up
5. Free-Electron Laser
5.1. Peak Brilliance
5.2. Pulse Energy and Transverse Coherence
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pellegrini, C.; Marinelli, A.; Reiche, S. The physics of X-ray free-electron lasers. Rev. Mod. Phys. 2016, 88, 015006. [Google Scholar] [CrossRef]
- Seddon, E.A.; Clarke, J.A.; Dunning, D.J.; Masciovecchio, C.; Milne, C.J.; Parmigiani, F.; Rugg, D.; Spence, J.C.H.; Thompson, N.R.; Ueda, K.; et al. Short-wavelength free-electron laser sources and science: A review. Rep. Prog. Phys. 2017, 80, 115901. [Google Scholar] [CrossRef] [PubMed]
- Di Mitri, S.; Cornacchia, M. Electron beam brightness in linac drivers for free-electron-lasers. Phys. Rep. 2014, 539, 1–48. [Google Scholar] [CrossRef]
- CompactLight. Available online: http://www.compactlight.eu (accessed on 1 October 2020).
- D’Auria, G. The CompactLight Design Study Project. In Proceedings of the 10th International Particle Accelerator Conference, TUPRB032, Melbourne, Australia, 19–24 May 2019; ISBN 978-3-95450-208-0. [Google Scholar]
- Di Mitri, S. XLS Deliverables-Design with Accelerator and Undulator Requirements. 2019. Available online: https://www.compactlight.eu/uploads/Main/D2.2_XLS_FEL%20Design%20with%20Accelerator%20and%20Undulator%20Requirements.pdf (accessed on 1 October 2020).
- Ferrario, M. XLS Deliverables-Preliminary Assessments and Evaluations of the Optimum e-Gun and Injector Solution for the CompactLight Design. Available online: https://www.compactlight.eu/uploads/Main/D3.1_XLS_Optimum%20e-Gun%20and%20Injector%20Solution.pdf (accessed on 1 October 2020).
- Mak, A.; Salén, P.; Goryashko, V.; Clarke, J. Science Requirements and Performance Specification for the CompactLight X-ray Free-Electron Laser; FREIA Report 2019/01; Uppsala University: Uppsala, Sweden, 2020; Available online: http://uu.diva-portal.org/smash/get/diva2:1280300/FULLTEXT01.pdf (accessed on 1 October 2020).
- Nguyen, F. XLS Deliverables-Technologies for the CompactLight Undulator. Available online: https://www.compactlight.eu/uploads/Main/D5.1_XLS_Undulator-Technologies.pdf (accessed on 1 October 2020).
- Cortés, H.M.C.; Thompson, N.R.; Dunning, D.J. Linear polarisation via a Delta Afterburner for the CompactLight Facility. In Proceedings of the 39th Free Electron Laser Conference FEL 2019, JACoW Publishing, Geneva, Switzerland, 26–30 August 2019. [Google Scholar] [CrossRef]
- Kondratenko, A.M.; Saldin, E.L. Generation of coherent radiation by a relativistic electron beam in an undulator. Part. Accel. 1980, 10, 207–216. [Google Scholar]
- Bonifacio, R.; Pellegrini, C.; Narducci, L. Collective instabilities and high-gain regime in a free electron laser. Opt. Commun. 1984, 50, 373–378. [Google Scholar]
- Carlsten, B.E. New photoelectric injector design for the Los Alamos National Laboratory XUV FEL accelerator. Nucl. Instrum. Meth. Phys. Res. A 1989, 285, 311–319. [Google Scholar] [CrossRef] [Green Version]
- Serafini, L.; Rosenzweig, J.B. Envelope analysis of intense relativistic quasilaminar beams in rf photoinjectors:mA theory of emittance compensation. Phys. Rev. E 1997, 55, 7565–7590. [Google Scholar] [CrossRef] [Green Version]
- Ferrario, M.; Alesini, D.; Bacci, A.; Bellaveglia, M.; Boni, R.; Boscolo, M.; Castellano, M.; Catani, L.; Chiadroni, E.; Cialdi, S.; et al. Direct measurement of the double emittance minimum in the beam dynamics of the sparc high-brightness photoinjector. Phys. Rev. Lett. 2007, 99, 234801. [Google Scholar] [CrossRef] [Green Version]
- Chao, B.; Richter, C.Y. Yao Beam Emittance Growth Caused by Transverse Deflecting Fields in a Linear Accelerator, SLAC-PUB-2498. Nucl. Instrum. Meth. 1980, 178, 1. [Google Scholar] [CrossRef]
- Derbenev, Y.S.; Rossbach, J.; Saldin, E.L.; Shiltsev, V.D. TESLA-FEL 95-05; DESY: Hamburg, Germany, 1995. [Google Scholar]
- Bane, K.L.F.; Decker, F.-J.; Ding, Y.; Dowell, D.; Emma, P.; Frisch, J.; Huang, Z.; Iverson, R.; Limborg-Deprey, C.; Loos, H.; et al. Measurements and modeling of coherent synchrotron radiation and its impact on the Linac Coherent Light Source electron beam. Phys. Rev. Spéc. Top. Accel. Beams 2009, 12, 030704. [Google Scholar] [CrossRef] [Green Version]
- Di Mitri, S.; Allaria, E.M.; Craievich, P.; Fawley, W.; Giannessi, L.; Lutman, A.; Penco, G.; Spampinati, S.; Trovò, M. Transverse emittance preservation during bunch compression in the Fermi free electron laser. Phys. Rev. ST Accel. Beams 2012, 15, 020701. [Google Scholar] [CrossRef]
- Di Mitri, S.; Cornacchia, M.; Spampinati, S. Cancellation of Coherent Synchrotron Radiation Kicks with Optics Balance. Phys. Rev. Lett. 2013, 110, 014801. [Google Scholar] [CrossRef] [PubMed]
- Hall, C.C.; Biedron, S.; Edelen, A.L.; Milton, S.V.; Benson, S.; Douglas, D.; Li, R.; Tennant, C.; Carlsten, B.E. Measurement and simulation of the impact of coherent synchrotron radiation on the Jefferson Laboratory energy recovery linac electron beam. Phys. Rev. Spéc. Top. Accel. Beams 2015, 18. [Google Scholar] [CrossRef] [Green Version]
- Bettoni, S.; Aiba, M.; Beutner, B.; Pedrozzi, M.; Prat, E.; Reiche, S.; Schietinger, T. Preservation of low slice emittance in bunch compressors. Phys. Rev. Accel. Beams 2016, 19, 073035. [Google Scholar] [CrossRef] [Green Version]
- Brynes, A.D.; Smorenburg, P.; Akkermans, I.; Allaria, E.; Badano, L.; Brussaard, S.; Danailov, M.; Demidovich, A.; De Ninno, G.; Gauthier, D.; et al. Beyond the limits of 1D coherent synchrotron radiation. New J. Phys. 2018, 20, 073035. [Google Scholar] [CrossRef]
- Stupakov, G. Centripetal Transverse Wakefield in Relativistic Beam. arXiv 2019, arXiv:1901.10745. [Google Scholar]
- Di Mitri, S. Maximum brightness of linac-driven electron beams in the presence of collective effects. Phys. Rev. Spéc. Top. Accel. Beams 2013, 16, 121002. [Google Scholar] [CrossRef] [Green Version]
- Raubenheimer, T.O. Estimates of emittance dilution and stability in high-energy linear accelerators. Physical Review Special Topics-Accelerators and Beams. Phys. Rev. ST Accel. Beams 2000, 3, 121002. [Google Scholar] [CrossRef] [Green Version]
- Grudiev, A.; Wuensch, W. MOP068, Design of the CLIC main linac accelerating structure for CLIC conceptual design report. In Proceedings of the 25th International Linear Accelerator Conference, LINAC-2010, Tsukuba, Japan, 12–17 September 2010. [Google Scholar]
- Zha, H.; Latina, A.; Grudiev, A.; de Michele, G.; Solodko, A.; Wuensch, W.; Schulte, D.; Adli, E.; Lipkowitz, N.; Yocky, G.S. Beam-based measurements of long range transverse wakefields in CLIC main linac accelerating structure. Phys. Rev. Accel. Beams 2016, 19, 011001. [Google Scholar] [CrossRef] [Green Version]
- Xie, M. Design optimization for an X-ray free electron laser driven by a SLAC linac, TPG10. In Proceedings of the 1995 Particle Accelerator Conference, Dallas, TX, USA, 1–5 May 1995; pp. 183–185. [Google Scholar]
- Dattoli, G.; Renieri, A. Laser Handbook, 4th ed.; Elsevier Science Ltd.: Oxford, UK, 1986. [Google Scholar]
- Emma, P. X-Band RF Harmonic Compensation for Linear Bunch Compression in the LCLS, SLAC-TN-05-004 and LCLS-TN-01-1. SLAC: Menlo Park, CA, USA, 14 November 2001. Available online: http://www-ssrl.slac.stanford.edu/lcls/technotes/LCLS-TN-01-1.pdf (accessed on 1 October 2020).
- Flöttmann, K.; Limberg, T.; Piot, P. TESLA-FEL-2001-06; DESY: Hamburg, Germany, 2001. [Google Scholar]
- Saldin, E.; Schneidmiller, E.; Yurkov, M. Klystron instability of a relativistic electron beam in a bunch compressor. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2002, 490, 1–8. [Google Scholar] [CrossRef]
- Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M. Longitudinal space charge-driven microbunching instability in the TESLA Test Facility linac. Nucl. Instr. Meth. Phys. Res. A 2004, 528, 355. [Google Scholar] [CrossRef]
- Dowell, D.H. Sources of emittance in rf photocathode injectors: Intrinsic emittance, space-charge forces due to non-uniformities, rf and solenoid effects. arXiv 2016, arXiv:1610.01242. [Google Scholar]
- Rosenzweig, J.B.; Colby, E. Charge and Wavelength Scaling of RF Photoinjector Design, DESY Technical Note TESLA-95-04. 1995. Available online: https://flash.desy.de/reports_publications/tesla_reports/tesla_reports_1995/ (accessed on 1 October 2020).
- Alesini, D.; Castorina, G.; Croia, M.; Diomede, M.; Ferrario, M.; Gallo, A.; Giribono, A.; Spataro, B.; Vaccarezza, C.; Vannozzi, A. Design of a Full C-Band Injector for Ultra-High Brightness Electron Beam. In Proceedings of the 10th International Particle Accelerator Conference, TUPTS024, Melbourne, Australia, 19–24 May 2019; ISBN 978-3-95450-208-0. [Google Scholar]
- Ding, Y.; Brachmann, A.; Decker, F.-J.; Dowell, D.; Emma, P.; Frisch, J.; Gilevich, S.; Hays, G.; Hering, P.; Huang, Z.; et al. Measurements and Simulations of Ultralow Emittance and Ultrashort Electron Beams in the Linac Coherent Light Source. Phys. Rev. Lett. 2009, 102, 254801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prat, E.; Aiba, M.; Bettoni, S.; Beutner, B.; Reiche, S.; Schietinger, T. Emittance measurements and minimization at the SwissFEL Injector Test Facility. Phys. Rev. Spéc. Top. Accel. Beams 2014, 17, 100702. [Google Scholar] [CrossRef] [Green Version]
- Schietinger, T.; Pedrozzi, M.; Aiba, M.; Arsov, V.; Bettoni, S.; Beutner, B.; Calvi, M.; Craievich, P.; Dehler, M.; Frei, F.; et al. Commissioning experience and beam physics measurements at the SwissFEL Injector Test Facility. Phys. Rev. Accel. Beams 2016, 19, 100702. [Google Scholar] [CrossRef]
- Krasilnikov, M.; Stephan, F.; Asova, G.; Grabosch, H.-J.; Groß, M.; Hakobyan, L.; Isaev, I.; Ivanisenko, Y.; Jachmann, L.; Khojoyan, M.; et al. Experimentally minimized beam emittance from anL-band photoinjector. Phys. Rev. Spéc. Top. Accel. Beams 2012, 15, 100701. [Google Scholar] [CrossRef] [Green Version]
- Dohlus, M.; Emma, P.; Limberg, T. Electron bunch length compression. ICFA Beam Dyn. Newsl. 2005, 38, 15–37. [Google Scholar]
- Di Mitri, S.; Cornacchia, M. Merit functions for the linac optics design for colliders and light sources. Nucl. Instr. Meth. Phys. Res. A 2014, 735, 60–65. [Google Scholar] [CrossRef]
- Di Mitri, S.; Venier, C.; Vescovo, R.; Sturari, L. Wakefield benchmarking at a single-pass high brightness electron linac. Phys. Rev. Accel. Beams 2019, 22, 014401. [Google Scholar] [CrossRef] [Green Version]
- Bane, K.L.F. Wakefields of sub-picosecond electron bunches. Int. J. Mod. Phys. A 2007, 22, 3736–3758. [Google Scholar] [CrossRef] [Green Version]
- Latina, A. PLACET. Available online: https://twiki.cern.ch/twiki/bin/view/ABPComputing/Placet (accessed on 1 October 2020).
- Craievich, P.; Di Mitri, S.; Zholents, A. Single-bunch emittance preservation in the presence of trajectory jitter for FERMI@elettra-seeded FEL. Nucl. Instr. Meth. Phys. Res. A 2009, 604, 457–465. [Google Scholar] [CrossRef]
- Latina, A.; Pfingstner, J.; Schulte, D.; Adli, E.; Decker, F.J.; Lipkowitz, N. Experimental demonstration of a global dispersion-free steering correction at the new linac test facility at SLAC. Phys. Rev. ST Accel. Beams 2014, 17, 059901. [Google Scholar] [CrossRef]
- Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V. Statistical and coherence properties of radiation from X-ray free-electron lasers. New J. Phys. 2010, 12. [Google Scholar] [CrossRef]
- Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V. Design Formulas for VUV and X-ray FELs. In Proceedings of the 26th International Free Electron Laser Conference, Trieste, Italy, 29 August–3 September 2004. [Google Scholar]
- Di Mitri, S.; Spampinati, S. Estimate of free electron laser gain length in the presence of electron beam collective effects. Phys. Rev. Spéc. Top. Accel. Beams 2014, 17, 845860601. [Google Scholar] [CrossRef] [Green Version]
- Dattoli, G.; Di Mitri, S.; Nguyen, F.; Petralia, A. Slice collective dynamics, projected emittance deterioration and free electron laser performances detrimental effects. J. Plasma Phys. 2020, 86, 172. [Google Scholar] [CrossRef]
- Tanaka, T.; Kitamura, H.; Shintake, T. Consideration on the BPM alignment tolerance in X-ray FELs. Nucl. Instrum. Methods Phys. Res. Sect. A 2004, 528, 172. [Google Scholar] [CrossRef]
Parameter | Unit | Soft X-ray | Hard X-ray |
---|---|---|---|
Repetition rate | kHz | <1 | 0.1 |
Electron energy | GeV | 1–2 | 2–5.7 |
Photon energy | keV | 0.25–2.0 | 2.0–16.0 |
Peak brilliance @ highest photon energy | (*) | 1031 | 1033 |
Pulse duration, FWHM | fs | 0.1–50 | 1–50 |
Polarization | variable | Variable | |
Two-pulse delay | fs | ±100 | ±100 |
Parameter | Unit | Value | ||
---|---|---|---|---|
Nominal bunch charge | pC | 75 | ||
Peak current at injector | A | 20 | ||
Normalized emittance | µm rad | 0.15 | ||
Photon energy range | SX | SX | HX | |
Shortest FEL wavelength | nm | 2.5 | 0.6 | 0.08 |
Repetition rate | kHz | 1 | 0.1 | 0.1 |
Final beam energy | GeV | 1 | 2–2.4 | 5.5 |
Final peak current | kA | 0.35 | ≤5 | ≤5 |
Final bunch length, rms | fs | ~220 | ~17 | ~17 |
Parameter | Units | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Charge | pC | 75 | 150 | 300 | ||||||
Normalized emittance | µm | 0.15 | 0.24 | 0.38 | ||||||
Peak current | A | 20 | 32 | 50 | ||||||
Photon energy range | SX | SX | HX | SX | SX | HX | SX | SX | HX | |
Repetition rate | kHz | 1 | 0.1 | 0.1 | 1 | 0.1 | 0.1 | 1 | 0.1 | 0.1 |
Final beam energy | GeV | 1 | 2 | 5.5 | 1 | 2 | 5.5 | 1 | 2 | 5.5 |
Total compression factor | 18 | 225 | 225 | 11 | 141 | 141 | 7 | 90 | 90 | |
Final bunch length, rms | fs | ~220 | ~17 | ~17 | ~370 | ~30 | ~30 | ~600 | ~50 | ~50 |
Final peak current (core) | kA | 0.35 | 4.5 | 4.5 | 0.35 | 4.5 | 4.5 | 0.35 | 4.5 | 4.5 |
Parameter | Unit | BC1 | BC2 |
---|---|---|---|
Beam energy | GeV | 0.28 | 0.5, 0.75, 1 |
Bending angle | mrad | 53 | 37 |
Dipole length | m | 0.4 | 0.4 |
Drift length between outer dipoles | m | 5 | 3 |
Max. |R56| | mm | 32 | 9 |
βx at the 3rd dipole | m | 3 | 3 |
Parameter | Unit | Value |
---|---|---|
Charge | pC | 75, 150, 300 |
Initial beam energy | GeV | 0.5 |
Final beam energy | GeV | 1 |
Peak current | kA | 0.35 |
X-band cavity length | m | 0.9 |
FODO cell length | m | 4 |
Total linac length | m | 80 |
Linac lateral misalignment, rms | µm | 10–100 |
α-factor | <0.01 | |
Average betatron functions | m | 2.5–6.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Mitri, S.; Latina, A.; Aicheler, M.; Aksoy, A.; Alesini, D.; Burt, G.; Castilla, A.; Clarke, J.; Cortés, H.M.C.; Croia, M.; et al. Scaling of Beam Collective Effects with Bunch Charge in the CompactLight Free-Electron Laser. Photonics 2020, 7, 125. https://doi.org/10.3390/photonics7040125
Di Mitri S, Latina A, Aicheler M, Aksoy A, Alesini D, Burt G, Castilla A, Clarke J, Cortés HMC, Croia M, et al. Scaling of Beam Collective Effects with Bunch Charge in the CompactLight Free-Electron Laser. Photonics. 2020; 7(4):125. https://doi.org/10.3390/photonics7040125
Chicago/Turabian StyleDi Mitri, Simone, Andrea Latina, Marcus Aicheler, Avni Aksoy, David Alesini, Graeme Burt, Alejandro Castilla, Jim Clarke, Hector Mauricio Castañeda Cortés, Michele Croia, and et al. 2020. "Scaling of Beam Collective Effects with Bunch Charge in the CompactLight Free-Electron Laser" Photonics 7, no. 4: 125. https://doi.org/10.3390/photonics7040125
APA StyleDi Mitri, S., Latina, A., Aicheler, M., Aksoy, A., Alesini, D., Burt, G., Castilla, A., Clarke, J., Cortés, H. M. C., Croia, M., D’Auria, G., Diomede, M., Dunning, D., Ferrario, M., Gallo, A., Giribono, A., Goryashko, V., Mostacci, A., Nguyen, F., ... Wuensch, W. (2020). Scaling of Beam Collective Effects with Bunch Charge in the CompactLight Free-Electron Laser. Photonics, 7(4), 125. https://doi.org/10.3390/photonics7040125